
An Intuitionistic Logic That Proves Markov’s Principle

Hugo Herbelin
INRIA - PPS
Paris, France

Hugo.Herbelin@inria.fr

Abstract—We design an intuitionistic predicate logic that
supports a limited amount of classical reasoning, just enough
to prove a variant of Markov’s principle suited for predicate
logic.

At the computational level, the extraction of an existential
witness out of a proof of its double negation is done by using
a form of statically-bound exception mechanism, what can be
seen as a direct-style variant of Friedman’s A-translation.

Keywords-Markov’s principle; intuitionistic logic; proof-as-
program correspondence; exceptions

I. INTRODUCTION

In arithmetic, Markov’s principle is a weak classical
scheme stating ¬¬∃xA(x) → ∃xA(x) for every decidable
formula A(x). Though not derivable [1] in Heyting Arith-
metic (i.e. intuitionistic arithmetic), its formulation as a rule
(Markov’s rule) is admissible (see e.g. [2] for a classical
proof). One of the important properties of Markov’s princi-
ple is that it implies, via the double-negation translation, the
conservativity of classical logic over intuitionistic logic for
Π0

2-formulas.
Markov’s principle is realizable (in the sense of

Kleene [3]) by unbounded search (ensured terminating by
use of classical reasoning) and the witness of its functional
interpretation (in the sense of Gödel [4]) is the identity
function (justified to be a correct interpretation by using
Markov’s principle itself). This is generally by one of these
two ways that programs are extracted from proofs that use
Markov’s principle, especially in constructive analysis where
Markov’s principle amounts to the property ¬¬x 6= y →
x 6= y (6= asserts the existence of a rational number that
separates x and y, see e.g. [5]).

Howard’s correspondence [6] between natural deduction
and λ-calculus emphasized that Prawitz’s normalization of
intuitionistic natural deduction [7] can be used as a method
to compute with proofs. By later showing a connection
between classical axioms and control operators, Griffin [8]
revealed that normalization is a computation device also
for classical logic. While intuitionistic logic satisfies the
disjunction and existence properties, it is however not the
case of classical logic and Markov’s principle has this
peculiarity to lie in between, being classical in its form and
still retaining the disjunction and existence properties, as
was shown e.g. by Smorynski in [2]. One of our objective

is then to study intuitionistic logic extended with Markov’s
principle as a proper constructive logic.

An elementary method to prove the intuitionistic admis-
sibility of Markov’s rule has been given by Friedman who
introduced for this purpose a notion of A-translation [9] (see
also Dragalin [10]). In fact, Friedman’s proof does not prove
¬¬∃xA(x)→ ∃xA(x) for any propositional formula A(x)
but only for those A(x) that do not contain the implication
connective (this was noticed for instance in Berger [11]).
More generally, Friedman’s method can be interpreted from
the proof-theoretical point of view as a proof that ¬¬A→ A
is admissible in intuitionistic predicate logic whenever A is
a ∀-→-free formula, the case of ∃xA(x) for A(x) →-free
being just a prototypical instance of the scheme.

We concentrate here on predicate logic and refer to in
this context as Markov’s principle the scheme that asserts
¬¬T → T whenever T is ∀-→-free. Extending intuitionistic
logic with classical reasoning on ∀-→-free formulas is then
the same as adding Markov’s principle and we show that the
resulting logic is constructive in the sense that it satisfies
normalization and the disjunction and existence properties.

At the computational level, the added classical rules can
be seen as a mechanism of (statically-bound) exception
throwing similar to the one introduced by Nakano in his
(intuitionistic) catch and throw calculus [12]1.

II. IQCMP : AN INTUITIONISTIC PREDICATE LOGIC
THAT PROVES MARKOV’S PRINCIPLE

Usual intuitionistic predicate logic (IQC) is defined from
a set of function symbols f , g, . . . , each of a given arity and
a set of predicate symbols P , Q, R, ... each with an arity
too. Functions symbols of arity 0 are called constants and
predicate symbols of arity 0 are called atomic propositions.

Terms are built from a set of variables x, y, ... by

t, u ::= f(~t) | x

where f ranges over function symbols and ~t denotes in f(~t)
a sequence of terms of length the arity of f . Formulas are
built from the standard connectives and quantifiers by the

1Ordinary (dynamically bound) exceptions, as found in the ML, C++ or
Java programming languages can actually be considered too, this is part of
ongoing work.

A ∈ Γ

Γ `∆ A
AXIOM

Γ `∆ A1 Γ `∆ A2

Γ `∆ A1 ∧A2

∧I
Γ `∆ A1 ∧A2

Γ `∆ Ai
∧iE

Γ `∆ Ai

Γ `∆ A1 ∨A2

∨iI
Γ `∆ A1 ∨A2 Γ, A1 `∆ B Γ, A2 `∆ B

Γ `∆ B
∨E

Γ, A `∆ B

Γ `∆ A→ B
→I

Γ `∆ A→ B Γ `∆ A

Γ `∆ B
→E

Γ `∆ A(x) x fresh

Γ `∆ ∀xA(x)
∀I

Γ `∆ ∀xA(x)

Γ `∆ A(t)
∀E

Γ `∆ A(t)

Γ `∆ ∃xA(x)
∃I

Γ `∆ ∃xA(x) Γ, A(x) `∆ B x fresh

Γ `∆ B
∃E

Γ `∆ >
>I

Γ `∆ ⊥

Γ `∆ C
⊥E

Γ `T,∆ T

Γ `∆ T
CATCH

Γ `∆ T T ∈ ∆

Γ `∆ C
THROW

Figure 1. Inference rules of IQCMP

grammar

A,B ::= P (~t) | > | ⊥ | A→ B | A ∧B | A ∨B
| ∀xA | ∃xA

where P ranges over predicate symbols and ~t is a sequence
of terms whose length is the arity of P . Negation ¬A is
defined as A → ⊥. In ∀xA and ∃xA, x is bound and
freely subject to renaming (so-called α-conversion).
IQCMP is an extension of IQC. Its inference rules are

given on Figure 1 (we use natural deduction). The subclass
of ∀-→-free formulas plays a special role and we use T , U ,
... to denote such formulas:

T,U ::= P (~t) | > | ⊥ | T ∧ U | T ∨ U | ∃xT

Contexts of formulas, written Γ, are ordered sequences of
formulas. Contexts of ∀-→-free formulas, written ∆, are
ordered sequences of ∀-→-free formulas. By ¬∆ is meant
the context obtained by distributing ¬ over the formulas of
∆. Note that IQC can be characterized as the subset of
IQCMP obtained by removing the rules CATCH and THROW
and keeping ∆ empty.

The main difference between IQCMP and IQC is that
the former supports classical reasoning on ∀-→-free formu-
las. This is implemented by the rules CATCH and THROW
which say that to prove a ∀-→-free formula T , one is
allowed to change its mind during the proof and to restart a
new proof of T at any time.

The main properties of IQCMP is that it proves Markov’s
principle while still retaining the disjunction and existence
properties that are characteristic of intuitionistic logic.

Let us write MP for the scheme ¬¬T → T where T
is a ∀-→-free formula (this is the “proof-theoretic” way to
think about Markov’s principle) and MP∃ for the scheme
¬¬∃~xA(~x) → ∃~xA(~x) where A(~x) is an →-free propo-
sition (this is the “standard” way to think about Markov’s
principle). Both schemes are logically equivalent.

Theorem 1: In IQCMP , MP and MP∃ hold.
Proof: One gets a proof of T `T ⊥ by applying

THROW. By →I and →E we obtain a proof of ¬¬T `T ⊥.
By applying ⊥E followed by CATCH, we get a proof of
¬¬T ` T from which ¬¬T → T derives (note that we
freely use the lemma that Γ `∆ A implies Γ′ `∆′ A for
Γ ⊂ Γ′ and ∆ ⊂ ∆′; this weakening lemma, as expected,

(a : A) ∈ Γ

Γ `∆ a : A
AXIOM

Γ `∆ p1 : A1 Γ `∆ p2 : A2

Γ `∆ (p1, p2) : A1 ∧A2

∧I
Γ `∆ p : A1 ∧A2

Γ `∆ π1p : Ai
∧oE

Γ `∆ p : Ai

Γ `∆ ιi(p) : A1 ∨A2

∨iI
Γ `∆ p : A1 ∨A2 Γ, a1 : A1 `∆ p1 : B Γ, a2 : A2 `∆ p2 : B

Γ `∆ case p of [a1.p1 | a2.p2] : B
∨E

Γ, a : A `∆ p : B

Γ `∆ λa.p : A→ B
→I

Γ `∆ p : A→ B Γ `∆ q : A

Γ `∆ p q : B
→E

Γ `∆ p : A(x) x fresh

Γ `∆ λx.p : ∀xA(x)
∀I

Γ `∆ p : ∀xA(x)

Γ `∆ pt : A(t)
∀E

Γ `∆ p : A(t)

Γ `∆ (t, p) : ∃xA(x)
∃I

Γ `∆ p : ∃xA(x) Γ, a : A(x) `∆ q : B x fresh

Γ `∆ dest p as (x, a) in q : B
∃E

Γ `∆ () : >
>I

Γ `∆ p : ⊥

Γ `∆ efq p : C
⊥E

Γ `α:T,∆ p : T

Γ `∆ catchα p : T
CATCH

Γ `∆ p : T (α : T) ∈ ∆

Γ `∆ throwα p : C
THROW

Figure 2. Proof-term annotation of IQCMP

indeed holds in IQCMP). The case of MP∃ holds by logical
equivalence with MP .

Theorem 2: Γ ` A in IQCMP iff MP,Γ ` A in IQC
iff MP∃,Γ ` A in IQC.

Proof: By Theorem 1, Γ,MP ` A implies Γ ` A
which obviously is a proof of IQCMP . Conversely, we
prove by induction on a derivation of Γ `∆ A in IQCMP

that MP,Γ,¬∆ ` A holds in IQC. All cases are direct and
we use MP for interpreting the rule CATCH.

Theorem 3 (Disjunction property): In IQCMP , if
` A1 ∨A2 then ` A1 or ` A2.

Theorem 4 (Existence property): In IQCMP , if
` ∃xA(x) then there exists t such that ` A(t).

The proof of these last two theorems is the subject of the
next section.

III. THE PROOF THEORY OF IQCMP

We show that the proofs of IQCMP have a computational
interpretation as programs in a λ-calculus extended with a
mechanism of statically-bound exceptions implemented with
operators named catch and throw.

The language of proofs is defined by the grammar

p, q ::= a | ιi(p) | (p, q) | (t, p) | λa.p | λx.p | ()
| case p of [a1.p1 | a2.p2]
| πi(p) | dest p as (x, a) in q

| p q | p t | efq p

| catchαp | throwαp

where a, b, . . . range over a first set of proof variables.
and α, β, . . . range over another set of proof variables.
The constructions λa.p, case p of [a1.p1 | a2.p2] and
dest p as (x, a) in q bind a, a1 and a2. The constructions
λx.p and dest p as (x, a) in q bind x. The construction
catchαp binds α. The binders are considered up to the
actual name used to represent the binder (α-conversion).

The annotation of IQCMP with proof-terms is given
in Figure 2 where the contexts Γ and ∆ are now maps
from variable names to formulas. For instance, the proof
of Markov’s principle in Theorem 1 is

λa.catchα efq (aλb.throwα b)

with the typing derivation given on Figure 3.

a : ¬¬T `α:T a : ¬¬T AXIOM

b : T `α:T b : T
AXIOM

b : T `α:T throwα b : ⊥ THROW

`α:T λb.throwα b : ¬T
→I

a : ¬¬T `α:T a (λb.throwα b) : ⊥
→E

a : ¬¬T `α:T efq a (λb.throwα b) : T
⊥E

a : ¬¬T ` catchα efq a (λb.throwα b) : T
CATCH

` λa.catchα efq a (λb.throwα b) : ¬¬T→ T
→I

Figure 3. Proof of MP

A subclass of proofs will play a particular role in extract-
ing the intuitionistic content of weakly classical proofs of
IQCMP . These are the values defined by

V ::= a | ιi(V) | (V, V) | (t, V) | λa.p | λx.p | ()

Another class of expressions will be useful to define the
reduction, it is the class of elementary evaluation contexts
defined by

F [] ::= case [] of [a1.p1 | a2.p2]
| πi([]) | dest [] as (x, a) in p

| [] q | (λx.q) []
| [] t | efq [] | throwα []
| ιi([]) | ([], p) | (V, []) | (t, [])

For F [] an elementary evaluation context and p a proof,
we write F [p] for the proof obtained by plugging p into the
hole of F [].

We can now define evaluation in IQCMP as the congruent
closure of the following reductions:

(λa.p)V → p[a← V]
(λx.p) t → p[x← t]
case ιi(V) of [a1.p1 | a2.p2] → pi[ai ← V]
dest (t, V) as (x, a) in p → p[x← t][a← V]
πi(V1, V2) → Vi
F [efq p] → efq p

F [throwαp] → throwαp

catchαthrowαp → catchαp

catchαthrowβV → throwβ V (α 6= β)
catchαV → V

where the substitutions p[a← V] and p[x← t] are capture-
free with respect to the three kinds of variables (x, a and
α).

Note that this is a call-by-value reduction semantics and
that we do not consider commutative cuts just because we
are only concerned with the normalization of closed proofs
and commutative cuts are not needed for that purpose.

Note also that because catchα only applies to proofs of
∀-→-formulas, V cannot contain subterms of the form λa.p
or λx.p in the last two rules and one is sure that α does
occur in V . This is a crucial point of the design of the
system which ensures that when a ∀-→-free formula has

been proved using Markov’s principle in the empty context,
its call-by-value evaluation reveals that the call to Markov’s
principle is in fact useless.

The operators catch and throw behave like the similarly
named operators of Nakano [12] or Crolard [13]. Like
in [12], but on the contrary of [13] (or of Parigot’s λµ-
calculus [14] to which the calculus of [13] is equivalent),
catch does not capture its surrounding context (i.e. there is
no rule of the form F [catchαp]→ catchβ p[throwα []←
throwβ F[]]). As such, throw behaves as an exception
raiser and catch as an exception handler but still not as
in standard programming languages like Java or ML, since
there exceptions are dynamically bound (i.e. the substitution
is not capture-free) while in IQCMP they are statically-
bound (i.e. the substitution is capture-free)2. Alternatively,
catchαp can be seen as a blocked control operator (i.e.
as an expression of the form # callccα p where # is a
delimiter [15] that blocks the interaction of callccα p with
its outside and expects it first to evaluate – to a value – before
being observed by the evaluation context of the delimiter).

We now check that the reduction system is compatible
with typing.

Theorem 5 (Strengthening): If Γ `∆,T V : T then
Γ `∆ V : T .

Proof: Obvious since the syntax of V refers to no p
(and hence to no catch or throw) as soon as → and ∀ are
excluded in T .

Theorem 6 (Subject reduction): If Γ `∆ p : A and p→ q
then Γ `∆ q : A.

Proof: By checking all cases, using Strengthening for
the last two rules. Note that since catch, on the contrary of
standard classical operators like callcc, does not capture its
context, its type remains unchanged and the ∀-→ constraint
on the formulas of ∆ is preserved.

We then characterize the set of normal forms in IQCMP .
Theorem 7 (Characterization of normal forms): The set

of typed normal forms for → corresponds to the entry r

2Compare substitution with capture
(λa.catchα(a, throwα1))(throwα2) → catchα(throwα2, throwα1)
to capture-free substitution
(λa.catchα(a, throwα1))(throwα2) → catchβ(throwα2, throwβ1) .

of the following grammar:

r ::= W | throwα W | s | efq s+ | throwα s
W ::= a | ιi(W) | (W,W) | (t,W) | λx.r | λa.r | ()
s ::= πi(s

+) | s+ r | s+ t | (λa.r) s
| ιi(s) | (s, r) | (W, s) | (t, s)
| case s+ of [a1.r1 | a2.r2]
| dest s+ as (x, a) in r

| catchα s | catchα efq s+ | catchα throwβ s
s+ ::= s | a

(we have to add efq W if we want to characterize untyped
normal forms.)

Proof: By inspection of the form of proofs that are not
reducible. If the normal proof is not a normal value W nor
a throwαW waiting to erase its context up to its binding
catchα, it is a proof whose computation is blocked by a
free variable. Such a normal proof either remains normal
when placed into a normal context F [], in which case it
has the form s, or it starts with throw or efq and captures
its surrounding context. A normal proof in s cannot be a
variable (otherwise it would be a value) but as soon as an
elimination rule is traversed, a variable can occur (entry s+).

We then check that the reduction system is not too
rudimentary and that it at least produces head-normal form
on closed proofs.

Theorem 8 (Progress): If ` p : A and p is not a (closed)
value then p is reducible.

Proof: According to Theorem 7, closed normal forms
are necessarily in the set W . But this set is a subset of the
set of values.

Theorem 9 (Normalization): If Γ `∆ p : A then p is
normalizable.

Proof: We only give a hint. IQCMP is a subsystem of
classical natural deduction equipped with a constrained call-
by-value reduction system. Then, its normalization directly
derives from the strong normalization of classical natural
deduction, represented e.g. as call-by-value simply-typed
Parigot’s λµ-calculus [14] equipped with sums, products and
the empty type, and with the appropriate reduction rules:
catchα p is interpreted by µα.[α]p, throwα p by µδ.[α]p for
δ fresh and efq p by µδ.[tp⊥]p where tp⊥ is the continuation
constant associated to the empty type (see [16]). It is unclear
whether normalization of this particular system has already
been considered in the literature. The closest work seems to
be David and Nour [17] who have a normalization proof for
a symmetric λµ-calculus. This subsumes the call-by-value
case but only implication is considered. Alternatively, we can
reduce normalization in natural deduction to normalization
in sequent calculus and embed the sequent calculus ver-
sion of IQCMP into Danos-Joinet-Schellinx (call-by-value)
LKQ [18] which (up to details about the representation
of the axiom and contraction rules) is a subsystem of
both LKtq [18] (which has cut-elimination as well for

call-by-name as for call-by-value by embedding either into
linear logic or into Urban’s non-deterministic LK [19]) or
LKµµ̃ [20] (for which a non-deterministic cut-elimination
able to capture call-by-value exists [21])3.

We are now ready to prove Theorems 3 and 4. Given
a proof of ` p : A1 ∨ A2, we know by progress and
normalization that p eventually reduces to a value V which,
by subject reduction, satisfies ` V : A1 ∨A2. By inspection
of the possible forms of V , we know that we have either
a proof of ` A1 or a proof of ` A2. Similarly, from
` p : ∃xA(x) we derive ` V : ∃xA(x) for some V and
hence ` A(t) for some term t.

IV. DISCUSSION AND RELATION TO OTHER WORKS

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the ∀-→-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (⊕, ⊗, 0, 1, !) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a ∀-→-free formula A (e.g.
?⊕x (?A(x)⊗?B(x))) where the presence of “?” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “?” connective can be extracted (meaning
for the example above a proof of ⊕x(A(x) ⊗ B(x))).
Interestingly, the removal of the “?”, i.e. the steps from
?P to P , correspond to applying the codereliction rule of
differential proof nets [24].

Nakano and Crolard’s intuitionistic catch and throw
calculi: Our calculus is very similar to the intuitionistic one
proposed by Nakano [12]. However, in [12], the rule of intro-
duction of implication requires ∆ to be empty what prevents
from deriving Markov’s principle. Actually, as expressed
in Theorem 5 of [12], the logical expressiveness Nakano’s
calculus is the one of LJ. Another variant of intuitionistic
logic with control operators that does not increase the logical
expressiveness can also be found in Crolard [25].

Friedman’s A-translation: Expressed in our calculus,
Friedman’s A-translation [9] maps a proof of Γ `∆ A in
IQCMP to a proof of Γ∆ ` A∆ in IQC, where B∆ is
obtained by replacing each atom of B by the disjunction of
the formulas in ∆. Through this translation, the THROW rule
(assuming w.l.o.g that it is used with atomic conclusions) is
interpretable as an injection. Also, for B ∀-→-free, we have
B∆ → B ∨

∨
∆ from what we see that the CATCH rule is

interpretable (the proof of B∆ → B ∨
∨

∆ can be logically
seen as the property that the proof of a ∀-→ formula
B can be purified from all its calls to throw by locally
following a call-by-value reduction strategy; interestingly,
when, B is a conjunction, there are two asymmetrical proofs

3Another way to prove the normalization of IQCMP without transiting
by full classical logic is by embedding into IQC using a variant of
Coquand-Hofmann’s own variant [22] of Friedman’s translation, as done
in a work in progress.

of C∆ ∧ D∆ → (C ∧ D) ∨
∨

∆ which match the two
asymmetrical ways to evaluate a pair along call-by-value
reduction). Henceforth, our calculus can be seen as a direct-
style variant4 of A-translation in the same way as callcc
provides with a direct-style representation of continuation-
passing-style translation [8], [26].

Independence of premise: The principle of indepen-
dence of premise (IP) is the scheme (¬B → ∃xA(x)) →
∃x (¬B → A(x)). As a rule, the independence of premise
principle is admissible in intuitionistic logic [27] but it
is not admissible in IQCMP because if it were, taking
A(x) an arbitrary atomic formula, one would obtain from
MP that ∃x (¬¬∃y A(y) → A(x)), then, by intuitionistic
reasoning, ∃x (∃y A(y) → A(x)), then, by Theorem 4,
∃y A(y) → A(t) for some term t. But by Theorem 7,
one sees that no normal proof can have this type (the
same reasoning holds in Heyting Arithmetic taking for A
a formula such that neither ` ¬¬A nor ` ¬A holds).

Markov’s principle in arithmetic: Since any decidable
formula can be expressed in terms of bounded existential
quantification, conjunction and disjunction over decidable
atoms, and hence as a ∀-→-free formula, we believe that
by using an axiom-free presentation of Heyting Arithmetic,
one could directly extend IQCMP to the arithmetic case.
We would then get a constructive content of ¬¬∃xA(x)→
∃xA(x) for A(x) decidable which, in contrast to the re-
alizer that successively checks the truth of each instance
of A(n), would not reconstruct a witness from scratch but
extract it from the proof. Especially, our constructivization
of Markov’s principle not only contains its own proof of
termination but it also directly evaluates to the witness of
the existential quantification.

Modified realizability: Markov’s principle is not real-
izable with respect to Kreisel’s modified realizability [28]
which therefore does not suit to IQCMP . When interpreting
an implication, we have to anticipate the possibility that the
function throw an exception. This suggests to introduce a
modification of modified realizability where realizability is
parametrized by a set ∆ of possible ∀-→-free formulas a
program is allowed to escape to and to have that t realizes
A → B with respect to ∆ whenever t u realizes B with
respect to ∆ for u realizing A with respect to any extension
of ∆, using a kind of polymorphism similar to the one
Coquand and Hofmann [22] introduced to extend Friedman’s
A-translation.

Completeness proofs: Gödel and Kreisel proved that
completeness for classical predicate logic implies Markov’s
principle. More precisely, Berardi and Valentini [29] showed

4Ongoing work suggests that Friedman’s A-translation is more pre-
cisely related to a reduction system where exceptions are dynamically-
bound (instead of statically-bound) and where the underlying structure
(beside the call-by-value part used to reduce catch) is call-by-name. For
statically-bound exceptions, the relation has to be sought towards Coquand-
Hofmann’s variant [22] of Friedman’s A-translation.

that Markov’s principle is necessary as soon as the con-
nective ⊥ of the logic is interpreted as absurdity in the
model (a similar phenomenon happens for the completeness
of intuitionistic logic for which the interpretation of ⊥ has
to be weakened so as to obtain intuitionistic proofs; see
e.g. Veldman [30]). We believe that both completeness for
classical logic and for intuitionistic logic could be carried
out in an extension of IQCMP to second-order arithmetic
without having to weaken the interpretation of ⊥.

V. CONCLUSION

We showed that adding classical reasoning on ∀-→-free
formulas to intuitionistic logic preserves the intuitionistic
character of the logic, as witnessed by the preservation of
the disjunction and existence properties, while providing
with an effective intuitionistic proof of Markov’s principle.
To compute with Markov’s principle, we used a form of
statically-bound exception mechanism.

ACKNOWLEDGMENTS

I thank Andreas Abel, Tristan Crolard, Danko Ilik, Guil-
laume Munch–Maccagnoni and Noam Zeilberger for fruitful
discussions on this topic.

REFERENCES

[1] G. Kreisel, “The non-derivability of ¬ (x) A(x) → (Ex) ¬
A(x), A primitive recursive, in intuitionistic formal systems
(abstract),” The Journal of Symbolic Logic, vol. 23, no. 4, pp.
456–461, dec 1958.

[2] A. S. Troelstra, Metamathematical Investigation of Intuition-
istic Arithmetic and Analysis, ser. Lecture Notes in Mathe-
matics. Berlin: Springer-Verlag, 1973, vol. 344.

[3] S. C. Kleene, “On the interpretation of intuitionistic number
theory,” The Journal of Symbolic Logic, vol. 10, no. 4, pp.
109–124, 1945.

[4] K. Gödel, “Über eine bisher noch nicht benützte Erweiterung
des finiten Standpunktes,” Dialectica, vol. 12, no. 3, pp. 280–
287, Dec. 1958.

[5] U. Kohlenbach, Applied Proof Theory: Proof Interpretations
and their Use in Mathematics, ser. Monographs in Mathemat-
ics. Springer, 2008.

[6] W. A. Howard, “The formulae-as-types notion of construc-
tions,” in to H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980,
unpublished manuscript of 1969.

[7] D. Prawitz, Natural Deduction, a Proof-Theoretical Study.
Almqvist and Wiksell, Stockholm, 1965.

[8] T. G. Griffin, “The formulae-as-types notion of control,”
in Conf. Record 17th Annual ACM Symp. on Principles of
Programming Languages, POPL ’90, San Francisco, CA,
USA, 17-19 Jan 1990. ACM Press, New York, 1990, pp.
47–57.

[9] H. Friedman, “Classically and intuitionistically provably
recursive functions,” in Higher Set Theory, ser. Lecture
Notes in Mathematics, D. S. Scott and G. H. Muller, Eds.
Berlin/Heidelberg: Springer, 1978, vol. 669, pp. 21–27.

[10] A. G. Dragalin, “New kinds of realizability and Markov’s
rule,” Soviet Mathematical Doklady, vol. 251, pp. 534–537,
1980.

[11] U. Berger, “A computational interpretation of open induction,”
in 19th IEEE Symposium on Logic in Computer Science (LICS
2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE
Computer Society, 2004, p. 326.

[12] H. Nakano, “A constructive formalization of the catch and
throw mechanism,” in Proceedings, Seventh Annual IEEE
Symposium on Logic in Computer Science, 22-25 June 1992,
Santa Cruz, California, USA. IEEE Computer Society, 1992,
pp. 82–89.

[13] T. Crolard, “A confluent lambda-calculus with a catch/throw
mechanism,” J. Funct. Program., vol. 9, no. 6, pp. 625–647,
1999.

[14] M. Parigot, “Lambda-mu-calculus: An algorithmic interpre-
tation of classical natural deduction,” in Logic Program-
ming and Automated Reasoning: International Conference
LPAR ’92 Proceedings, St. Petersburg, Russia. Springer-
Verlag, 1992, pp. 190–201.

[15] M. Felleisen, “The theory and practice of first-class prompts,”
in Proceedings of the 15th ACM Symposium on Principles of
Programming Languages (POPL ’88). ACM Press, New
York, Jan. 1988, pp. 180–190.

[16] Z. M. Ariola and H. Herbelin, “Minimal classical logic and
control operators,” in Thirtieth International Colloquium on
Automata, Languages and Programming , ICALP’03, Eind-
hoven, The Netherlands, June 30 - July 4, 2003, ser. Lecture
Notes in Computer Science, vol. 2719. Springer-Verlag,
2003, pp. 871–885.

[17] R. David and K. Nour, “Arithmetical proofs of strong nor-
malization results for symmetric λ-calculi,” Fundam. Inform.,
vol. 77, no. 4, pp. 489–510, 2007.

[18] V. Danos, J.-B. Joinet, and H. Schellinx, “A new deconstruc-
tive logic: Linear logic,” J. Symb. Log., vol. 62, no. 3, pp.
755–807, 1997.

[19] C. Urban, “Classical logic and computation,” Ph.D. Thesis,
University of Cambridge, Oct. 2000.

[20] P.-L. Curien and H. Herbelin, “The duality of computation,”
in Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2000, Mon-
treal, Canada, September 18-21, 2000, ser. SIGPLAN Notices
35(9). ACM, 2000, pp. 233–243.

[21] E. Polonovski, “Subsitutions explicites, logique et normalisa-
tion,” Ph.D. Thesis, University Paris 7, Jun. 2003.

[22] T. Coquand and M. Hofmann, “A new method for establishing
conservativity of classical systems over their intuitionistic ver-
sion,” Mathematical Structures in Computer Science, vol. 9,
no. 4, pp. 323–333, 1999.

[23] J.-Y. Girard, “Linear logic,” Theor. Comput. Sci., vol. 50, pp.
1–102, 1987.

[24] T. Ehrhard and L. Regnier, “Differential interaction nets,”
Electr. Notes Theor. Comput. Sci., vol. 123, pp. 35–74, 2005.

[25] T. Crolard, “Extension de l’isomorphisme de Curry-Howard
au traitement des exceptions,” Ph.D. Thesis, University Paris
7, Dec. 1996.

[26] C. Murthy, “Extracting constructive content from classical
proofs,” Ph.D. Thesis, Cornell University, 1990.

[27] A. Visser, “Aspects of diagonalization and provability,” Ph.D.
Thesis, University of Utrecht, Department of Philosophy, The
Nederland, Nov. 1981.

[28] G. Kreisel, “Interpretation of analysis by means of functionals
of finite type,” in Constructivity in Mathematics, A. Heyting,
Ed. North-Holland, 1959, pp. 101–128.

[29] S. Berardi and S. Valentini, “Krivine’s intuitionistic proof of
classical completeness (for countable languages),” Ann. Pure
Appl. Logic, vol. 129, no. 1-3, pp. 93–106, 2004.

[30] W. Veldman, “An intuitionistic completeness theorem for
intuitionistic predicate logic,” J. Symb. Log., vol. 41, no. 1,
pp. 159–166, 1976.

