
A sequent calculus presentation of the Calculus
of Inductive Constructions

(work in progress)

Hugo Herbelin

(jointly with Jeffrey Sarnat and Vincent Siles)

10 July 2010

Dependently Typed Programming Workshop

Edinburgh

1

Motivation

- sequent calculus can be seen as a λ-calculus

↪→ two main variants: LJT/LKT for call-by-name, LJQ/LKQ for
call-by-value

- sequent calculus is a typing system for abstract machine, hence a
priori for efficient reduction

↪→ left introduction rules build “stack”, right introduction rules build
code, cut rule builds states and closures

- sequent calculus is the natural framework for proof search

↪→ see e.g. Lengrand’s presentation of Pure Type Systems in sequent
calculus form

- sequent calculus is good at making some symmetries explicit

↪→ a symmetry syntactic presentation of fixpoints and cofixpoints
and of the respective guard conditions

2

LJT aka Spine Calculus

LKT and LKQ (Danos, Joinet and Schellinx, 1995) are two dual
complete restrictions of LK respectively connected to call-by-name
and call-by-value λ-calculus with control

LJT is the intuitionistic restriction of LKT

LJT normal proofs (unless LJ proofs) are in bijective correspondence
with call-by-name normal λ-terms

LJT has been independently designed by Cervesato and Pfenning un-
der the name of Spine Calculus

3

LJT aka Spine Calculus (the propositional case)

Two kinds of sequents: Γ ` A and Γ;B ` A (the place for B is called
“stoup”).

A ::= X | A→ A

Γ;A ` A
Ax

Γ, A;A ` B
Γ, A ` B

Cont

Γ ` A Γ;B ` C
Γ;A→ B ` C

→L

Γ, A ` B
Γ ` A→ B

→R

Γ ` A Γ;A ` B
Γ ` B

Cut

4

LJT aka Spine Calculus (the propositional case,
annotated)

M,N ::= xK | λx : A.M |MK (terms)

K,L ::= ε |M :: K (spines, orstacks)

Two kinds of sequents:

Γ `M : A for terms
Γ;A ` K : B for spines (expecting a term of type A for building a term of type B)

Γ;A ` ε : A
Ax

(x : A) ∈ Γ Γ;A ` K : B

Γ ` xK : B
Cont

Γ `M : A Γ;B ` K : C

Γ;A→ B `M :: K : C
→L

Γ, x : A `M : B

Γ ` λxA.M : A→ B
→R

Γ `M : A Γ;A ` K : B

Γ `MK : B
Cut

5

LJT aka Spine Calculus (the propositional case,
annotated)

In LJT , the reduction rules are cut-elimination rules for an abstract
machine.

code stack next state or result
(λxA.M) N :: K → M{N/x} K

(MK) L → M (K@L)

(λxA.M) ε → λxA.M

(xK) L → x(K@L)

(we use here effective substitutions but it could be done with explicit
ones)

6

LJT (the Pure Type Systems case, Lengrand, 2006)

M,N, T, U ::= xK | λxT .M |MK | s | ΠxT .U
K ::= ε |M :: K

Γ ` T : s

Γ;T ` ε : T
Ax

(x : T) ∈ Γ Γ;T ` K : U

Γ ` xK : U
Cont

Γ `M : T Γ;T ` K : U

Γ `MK : U
Cut

Γ `M : T Γ;U{M/x} ` K : C Γ ` ΠxT .U : s

Γ; ΠxT .U `M :: K : C
→L

Γ, x : T `M : U Γ ` ΠxT .U : s

Γ ` λxT .M : ΠxT .U
→R

Γ wf (s, s′) ∈ Ax

Γ ` s : s′
Sort

Γ ` T : s1 Γ, x : T ` U : s2 (s1, s2, s3) ∈ Rel

Γ ` ΠxT .U : s
Pi

Γ{;C} `M : T Γ ` U : s T = U

Γ{;C} `M : U
Conv1

R

Γ;T ` K : C Γ ` U : s T = U

Γ;U ` K : C
ConvL

and same reduction rules

7

Adding inductive types

8

First introducing contexts and substitutions

To deal with the arity of inductive types and constructors, it is con-
venient to consider a “calculus of context” (see Pientka et al) with
declarations asserting judgements:

Γ ++= Γ, x : [Γ ` T]

together with rules for defining substitutions:

Γ ` ε : [` T] 7→ [` T]

Γ `M0 : U0 Γ ` −→M : [Γ′ ` T]{M0/x0} 7→ [` T ′]

Γ `M0
−→
M : [x0 : U0,Γ

′ ` T] 7→ [` T ′]

and rules for applying these substitutions:

Γ ` N : [Γ′ ` T] Γ ` −→M : [Γ′ ` T] 7→ [` T ′]

Γ ` N−→M : T ′

9

Adding dependent pattern-matching

We can then consider inductive types as declarations of the following
form:

I : [
−−→
z : V ` sI], Ci : [

−−−→
xi : Ui ` I

−→
Ni]

and we interpret a case-analysis match N with . . . | Ci−→xi → Mi |
. . . end of natural deduction as a cut between N and a continuation
[. . . | Ci−→xi →Mi | . . .] that matches N . The extended syntax is:

M,N, T, U ++= C
−→
M | I−→M

K ++= [. . . | C−→x →M | . . .]

Regarding typing, the placeholder is now dependent in types and we
need to give it a name!

Γ,
−−→
z : V , y : I−→z ` T : s . . .Γ,

−−−→
xi : Ui `Mi : T{−→Ni/

−→z }{Ci−→xi/y} Ci : [
−−−→
xi : Ui ` I

−→
Ni] . . .

Γ; y : I
−→
P ` [. . . | Ci−→xi →Mi | . . .] : T{−→P /−→x }{y/y}

The reduction rule is

Ci0(
−→
P) [. . . | Ci−→xi →Mi | . . .] → Mi0{

−→
P /−→xi0}

10

Dependent cut

Because the typing rule for [. . . | Ci−→xi → Mi | . . .] is dependent in
the type, the cut rule now needs to be dependent too:

Γ `M : T Γ; y : T ` K : U

Γ `MK : U{M/y}
Cut

11

Adding fixpoints and cofixpoints

12

Adding fixpoints and cofixpoints

We want to exhibit a duality between fixpoints and cofixpoints. Let
us first consider a tail-recursive fixpoint without dependencies at all:

f := fixf λn.match n with 0 → 0 | S n → f (S (S n)) end

Obviously, this function is cutting n with a continuation that does
a case analysis on it, then depending on the result, recursively does
the same case analysis. We want to interpret this recursive part as a
fixpoint definition over evaluation contexts.

This suggests to consider variables α, β, . . . for evaluation contexts as
in

M,N, T, U ++= cofixx.M

K ++= α | fixα.K
and to represent f above as the expression

λn. n fixα.[0→ 0 | S n→ (S (S n))α]

The reduction rules come naturally:

M fixα.K → M K{fixα.K/α}
cofixx.M K → M{cofixx.M/x} K

13

Adding fixpoints and cofixpoints: typing

To type evaluation context variables, we need to consider sequents
with several (non-dependent) conclusions, i.e. either of the form Γ `
∆;M : T or Γ;x : U ` ∆;K : T and since evaluation context
variables denote terms with a hole, this suggests to have:

∆ ::= ε | ∆, α : [U ` T]

Then, we need an axiom rule for conclusions:

(α : [U ` T]) ∈ ∆

Γ;U ` ∆;α : T

We are then ready for giving the following dual rules:

Γ, x : I `M : I

Γ ` cofixx.M : I

Γ; I ` α : [I ` U];K : U

Γ; I ` fixα.K : U

(note that the symmetry would be perfect if in LJTµµ̃ instead of LJT)

14

Adding fixpoints and cofixpoints with parameters

Dependencies introduce a reading of the sequent from left to right.
Let us consider the extended syntax:

M,N, T, U ++= cofixx(~y).M

K ++= α | fixα(~y).K

For cofixpoints, the rule scales easily using declarations of contexts:

Γ, x : [
−−→
y : T ` I−→N],

−−→
y : T `M : I

−→
N

Γ ` cofixx(~y).M : [
−−→
y : T ` I−→N]

For fixpoints (and we are still restricting ourselves to the tail-recursive
case and no dependency in the conclusion), we need to type evaluation
context variables with contexts too:

∆ ::= ε | ∆, α : [Γ;U ` T]

Then, the new rule is:

Γ,
−−→
y : T ; I

−→
N ` α : [

−−→
y : T ; I

−→
N ` U];K : U

Γ; [
−−→
y : T ; I

−→
N ` U] ` fixα(~y).K : U

15

Adding fixpoints and cofixpoints with parameters:
reduction rules

The reduction rules extend easily:

M (fixα(~y).K)
−→
N → M K{−→N/~y}{fixα(~y).K/α}

(cofixx(~y).M)
−→
N K → M{−→N/~y}{cofixx(~y).M/x} K

16

Adding fixpoints and cofixpoints: the general case

In the non-tail recursive case, as e.g. in f := fixf λn.match n with 0 → 0 |
S n → S (fn) end, we need to pass a continuation to the re-
cursive evaluation-context variable. But in LJT a continuation is it-
self represented by an evaluation-context variable. Hence, we have a
dependency of the recursive evaluation-context variable into another
evaluation-context variable. This leads to the following generalised
syntax:

M,N, T, U ++= cofixx(~y)M

K ++= α | fixα(~yα)K

∆ ::= ε | ∆, α : [Γ;U ` ∆;T]

The axiom rule for conclusions does not change much:

(α : [Γ′;U ` ∆′;T]) ∈ ∆

Γ; [Γ′;U ` ∆′] ` ∆;α : T

17

Adding fixpoints and cofixpoints: the general case

Now, we need to build substitutions referring to evaluation contexts:

Γ ` ε : [;V `] 7→ [;V `]

Γ `M0 : U0 Γ ` −→M−→K : [Γ′;V `]{M0/x0} 7→ [;V ′ `]

Γ `M0
−→
M
−→
K : [x0 : U0,Γ

′;V `] 7→ [;V ′ `]

Γ;V0 ` K : T0 Γ ` −→K : [Γ′;V ` ∆;] 7→ [;V ′ `]

Γ ` K0
−→
K : [Γ′;V ` α : [V0 ` T0],∆;] 7→ [;V ′ `]

And we need to apply these substitutions:

Γ; [Γ′;V ` ∆;T] ` K ′ : T ′ Γ ` −→M−→K : [Γ′;V ` ∆] 7→ [;V ′ `]

Γ;V ′ ` K ′−→M−→K : T ′

We are now ready to give the general rule for fixpoints:

Γ,
−−→
y : T ;x : I

−→
N ` β : [;P (~y, x) ` U], α : [

−−→
y : T ;x : I

−→
N ` β : [;P (~y, x) ` U];U];K : U

Γ; [
−−→
y : T ;x : I

−→
N ` β : [;P (~y, x) ` U]] ` fixα(~yβ).K : U

(this complexity is the price to pay for tail-recursive simulation of non
tail-recursive fixpoints)

18

Adding fixpoints and cofixpoints: the general case

The reduction rules does not change much:

M (fixα(~yβ).K)
−→
NK ′ → M K{−→N/~y}{K ′/β}{fixα(~y).K/α}

The non tail-recursive example is expressed like this:

λn. n fixα(β).[0→ 0 | S n→ n(α(µ̃x.(S x)))]

Note that for building non linear evaluation contexts, we a priori need
the following extra rule adapted from LJTµµ̃ to LJT :

Γ, x : A `M : B

Γ;A ` µ̃x.M : B

19

Symmetry of the guard conditions

We have the following symmetry:

Guard condition for fixpoint = recursion traverses at least one left
introduction rule

Guard condition for cofixpoint = recursion traverses at least one right
introduction rule

For inductive types and fixpoints, termination comes from the interac-
tion between a finite term and an infinite guarded evaluation context.

For coinductive types and cofixpoints, termination comes from the
interaction between a guarded infinite term and a finite evaluation
context.

Note that in this duality, the difference between inductive and coin-
ductive types is not a built-from-constructor vs built-from-destructors
duality but a finite-infinite vs infinite-finite duality.

20

