A sequent calculus presentation of the Calculus of Inductive Constructions
 (work in progress)
 Hugo Herbelin
 (jointly with Jeffrey Sarnat and Vincent Siles)

10 July 2010

Dependently Typed Programming Workshop
Edinburgh

Motivation

- sequent calculus can be seen as a λ-calculus
\hookrightarrow two main variants: $L J_{T} / L K_{T}$ for call-by-name, $L J_{Q} / L K_{Q}$ for call-by-value
- sequent calculus is a typing system for abstract machine, hence a priori for efficient reduction
\hookrightarrow left introduction rules build "stack", right introduction rules build code, cut rule builds states and closures
- sequent calculus is the natural framework for proof search
\hookrightarrow see e.g. Lengrand's presentation of Pure Type Systems in sequent calculus form
- sequent calculus is good at making some symmetries explicit
\hookrightarrow a symmetry syntactic presentation of fixpoints and cofixpoints and of the respective guard conditions

$L J_{T}$ aka Spine Calculus

$L K_{T}$ and $L K_{Q}$ (Danos, Joinet and Schellinx, 1995) are two dual complete restrictions of $L K$ respectively connected to call-by-name and call-by-value λ-calculus with control
$L J_{T}$ is the intuitionistic restriction of $L K_{T}$
$L J_{T}$ normal proofs (unless $L J$ proofs) are in bijective correspondence with call-by-name normal λ-terms
$L J_{T}$ has been independently designed by Cervesato and Pfenning under the name of Spine Calculus

$L J_{T}$ aka Spine Calculus (the propositional case)

Two kinds of sequents: $\Gamma \vdash A$ and $\Gamma ; B \vdash A$ (the place for B is called "stoup").

$$
\begin{gathered}
A::=X \mid A \rightarrow A \\
\frac{\Gamma ; A \vdash A}{} \mathrm{Ax} \quad \frac{\Gamma, A ; A \vdash B}{\Gamma, A \vdash B} \mathrm{CoNT} \\
\frac{\Gamma \vdash A \quad \Gamma ; B \vdash C}{\Gamma ; A \rightarrow B \vdash C} \rightarrow_{L} \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow_{R} \\
\frac{\Gamma \vdash A \quad \Gamma ; A \vdash B}{\Gamma \vdash B} \mathrm{CuT}
\end{gathered}
$$

$L J_{T}$ aka Spine Calculus (the propositional case, annotated)

$$
\begin{array}{ll}
M, N::=x K|\lambda x: A \cdot M| M K & \text { (terms) } \\
K, L::=\epsilon \mid M:: K & \text { (spines, orstacks) }
\end{array}
$$

Two kinds of sequents:
$\Gamma \vdash M: A$ for terms
$\Gamma ; A \vdash K: B$ for spines (expecting a term of type A for building a term of type B)

$$
\begin{gather*}
\overline{\Gamma ; A \vdash \epsilon: A} \operatorname{Ax} \quad \frac{(x: A) \in \Gamma \quad \Gamma ; A \vdash K: B}{\Gamma \vdash x K: B} \text { ConT } \\
\frac{\Gamma \vdash M: A \quad \Gamma ; B \vdash K: C}{\Gamma ; A \rightarrow B \vdash M:: K: C} \rightarrow_{L} \quad \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x^{A} \cdot M: A \rightarrow B} \rightarrow_{R} \\
\frac{\Gamma \vdash M: A \quad \Gamma ; A \vdash K: B}{\Gamma \vdash M K: B} \mathrm{CuT} \tag{Cut}
\end{gather*}
$$

$L J_{T}$ aka Spine Calculus (the propositional case, annotated)

In $L J_{T}$, the reduction rules are cut-elimination rules for an abstract machine.

\[

\]

(we use here effective substitutions but it could be done with explicit ones)

$L J_{T}$ (the Pure Type Systems case, Lengrand, 2006)

$$
\begin{aligned}
& M, N, T, U::=x K\left|\lambda x^{T} . M\right| M K|s| \Pi x^{T} . U \\
& K \quad::=\epsilon \mid M:: K \\
& \frac{\Gamma \vdash T: s}{\Gamma ; T \vdash \epsilon: T} \quad \text { Ax } \quad \frac{(x: T) \in \Gamma \quad \Gamma ; T \vdash K: U}{\Gamma \vdash x K: U} \quad \operatorname{ConT} \quad \frac{\Gamma \vdash M: T \quad \Gamma ; T \vdash K: U}{\Gamma \vdash M K: U} \text { CuT } \\
& \frac{\Gamma \vdash M: T \quad \Gamma ; U\{M / x\} \vdash K: C \quad \Gamma \vdash \Pi x^{T} . U: s}{\Gamma ; \Pi x^{T} . U \vdash M:: K: C} \rightarrow_{L} \quad \frac{\Gamma, x: T \vdash M: U \quad \Gamma \vdash \Pi x^{T} \cdot U: s}{\Gamma \vdash \lambda x^{T} \cdot M: \Pi x^{T} . U} \rightarrow_{R} \\
& \frac{\Gamma \mathrm{wf} \quad\left(s, s^{\prime}\right) \in \mathcal{A} x}{\Gamma \vdash s: s^{\prime}} \operatorname{SoRT} \quad \frac{\Gamma \vdash T: s_{1} \quad \Gamma, x: T \vdash U: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R} e l}{\Gamma \vdash \Pi x^{T} . U: s} \operatorname{PI} \\
& \frac{\Gamma\{; C\} \vdash M: T \quad \Gamma \vdash U: s \quad T=U}{\Gamma\{; C\} \vdash M: U} \operatorname{Conv}_{R}^{1} \quad \frac{\Gamma ; T \vdash K: C \quad \Gamma \vdash U: s \quad T=U}{\Gamma ; U \vdash K: C} \\
& \text { and same reduction rules }
\end{aligned}
$$

Adding inductive types

First introducing contexts and substitutions

To deal with the arity of inductive types and constructors, it is convenient to consider a "calculus of context" (see Pientka et al) with declarations asserting judgements:

$$
\Gamma++=\Gamma, x:[\Gamma \vdash T]
$$

together with rules for defining substitutions:

$$
\overline{\Gamma \vdash \epsilon:[\vdash T] \mapsto[\vdash T]} \quad \frac{\Gamma \vdash M_{0}: U_{0} \quad \Gamma \vdash \vec{M}:\left[\Gamma^{\prime} \vdash T\right]\left\{M_{0} / x_{0}\right\} \mapsto\left[\vdash T^{\prime}\right]}{\Gamma \vdash M_{0} \vec{M}:\left[x_{0}: U_{0}, \Gamma^{\prime} \vdash T\right] \mapsto\left[\vdash T^{\prime}\right]}
$$

and rules for applying these substitutions:

$$
\frac{\Gamma \vdash N:\left[\Gamma^{\prime} \vdash T\right] \quad \Gamma \vdash \vec{M}:\left[\Gamma^{\prime} \vdash T\right] \mapsto\left[\vdash T^{\prime}\right]}{\Gamma \vdash N \vec{M}: T^{\prime}}
$$

Adding dependent pattern-matching

We can then consider inductive types as declarations of the following form:

$$
I:\left[\overrightarrow{z: V} \vdash s_{I}\right], C_{i}:\left[{\overrightarrow{x_{i}: U_{i}}}_{i} \vdash I \vec{N}_{i}\right]
$$

and we interpret a case-analysis match N with $\ldots\left|C_{i} \overrightarrow{x_{i}} \rightarrow M_{i}\right|$
\ldots...end of natural deduction as a cut between N and a continuation
$\left[\ldots\left|C_{i} \overrightarrow{x_{i}} \rightarrow M_{i}\right| \ldots\right]$ that matches N. The extended syntax is:

$$
\begin{array}{ll}
M, N, T, U++ & =C \vec{M} \mid I \vec{M} \\
K & ++=[\ldots|C \vec{x} \rightarrow M| \ldots]
\end{array}
$$

Regarding typing, the placeholder is now dependent in types and we need to give it a name!

$$
\frac{\Gamma, \overrightarrow{z: V}, y: I \vec{z} \vdash T: s \quad \ldots \Gamma, \overrightarrow{x_{i}: U_{i}} \vdash M_{i}: T\left\{\vec{N}_{i} / \vec{z}\right\}\left\{C_{i} \overrightarrow{x_{i}} / y\right\} \ldots \quad \ldots C_{i}:\left[\overrightarrow{x_{i}: \vec{U}_{i} \vdash I \vec{N}_{i}}\right]}{\Gamma ; y: I \vec{P} \vdash\left[\ldots\left|C_{i} \overrightarrow{x_{i}} \rightarrow M_{i}\right| \ldots\right]: T\{\vec{P} / \vec{x}\}\{y / y\}}
$$

The reduction rule is

$$
C_{i_{0}}(\vec{P})\left[\ldots\left|C_{i} \overrightarrow{x_{i}} \rightarrow M_{i}\right| \ldots\right] \quad \rightarrow \quad M_{i_{0}}\left\{\vec{P} / \overrightarrow{x_{i_{0}}}\right\}
$$

Dependent cut

Because the typing rule for $\left[\ldots\left|C_{i} \overrightarrow{x_{i}} \rightarrow M_{i}\right| \ldots\right]$ is dependent in the type, the cut rule now needs to be dependent too:

$$
\frac{\Gamma \vdash M: T \quad \Gamma ; y: T \vdash K: U}{\Gamma \vdash M K: U\{M / y\}}
$$

Adding fixpoints and cofixpoints

Adding fixpoints and cofixpoints

We want to exhibit a duality between fixpoints and cofixpoints. Let us first consider a tail-recursive fixpoint without dependencies at all:

$$
f:=\mathrm{fix}_{f} \lambda n \text {.match } n \text { with } 0 \rightarrow 0 \mid S n \rightarrow f(S(S n)) \text { end }
$$

Obviously, this function is cutting n with a continuation that does a case analysis on it, then depending on the result, recursively does the same case analysis. We want to interpret this recursive part as a fixpoint definition over evaluation contexts.

This suggests to consider variables α, β, \ldots for evaluation contexts as in

$$
\begin{array}{ll}
M, N, T, U & ++=\operatorname{cofix}_{x} \cdot M \\
K & ++=\alpha \mid \mathrm{fix}_{\alpha} \cdot K
\end{array}
$$

and to represent f above as the expression

$$
\lambda n . n \mathrm{fix}_{\alpha} \cdot[0 \rightarrow 0 \mid S n \rightarrow(S(S n)) \alpha]
$$

The reduction rules come naturally:

$$
\begin{array}{llll}
M & \mathrm{fix}_{\alpha} \cdot K & \rightarrow & M \\
\operatorname{cofix}_{x} \cdot M K & \rightarrow & M\left\{\operatorname{fix}_{\alpha} \cdot K / \alpha\right\} \\
K & \left.\operatorname{cofix}_{x} \cdot M / x\right\} & K
\end{array}
$$

Adding fixpoints and cofixpoints: typing

To type evaluation context variables, we need to consider sequents with several (non-dependent) conclusions, i.e. either of the form $\Gamma \vdash$ $\Delta ; M: T$ or $\Gamma ; x: U \vdash \Delta ; K: T$ and since evaluation context variables denote terms with a hole, this suggests to have:

$$
\Delta::=\epsilon \mid \Delta, \alpha:[U \vdash T]
$$

Then, we need an axiom rule for conclusions:

$$
\frac{(\alpha:[U \vdash T]) \in \Delta}{\Gamma ; U \vdash \Delta ; \alpha: T}
$$

We are then ready for giving the following dual rules:

$$
\frac{\Gamma, x: I \vdash M: I}{\Gamma \vdash \operatorname{cofix}_{x} \cdot M: I} \quad \frac{\Gamma ; I \vdash \alpha:[I \vdash U] ; K: U}{\Gamma ; I \vdash \mathrm{fix}_{\alpha} \cdot K: U}
$$

(note that the symmetry would be perfect if in $L J_{\mu \tilde{\mu}}^{T}$ instead of $L J_{T}$)

Adding fixpoints and cofixpoints with parameters

Dependencies introduce a reading of the sequent from left to right. Let us consider the extended syntax:

$$
\begin{array}{ll}
M, N, T, U++ & =\operatorname{cofix}_{x}(\vec{y}) \cdot M \\
K & ++=\alpha \mid \operatorname{fix}_{\alpha}(\vec{y}) \cdot K
\end{array}
$$

For cofixpoints, the rule scales easily using declarations of contexts:

$$
\frac{\Gamma, x:[\overrightarrow{y: \vec{T}} \vdash I \vec{N}], \overrightarrow{y: T} \vdash M: I \vec{N}}{\Gamma \vdash \operatorname{cofix}_{x}(\vec{y}) \cdot M:[\overrightarrow{y: T} \vdash I \vec{N}]}
$$

For fixpoints (and we are still restricting ourselves to the tail-recursive case and no dependency in the conclusion), we need to type evaluation context variables with contexts too:

$$
\Delta::=\epsilon \mid \Delta, \alpha:[\Gamma ; U \vdash T]
$$

Then, the new rule is:

$$
\frac{\Gamma, \overrightarrow{y: T} ; I \vec{N} \vdash \alpha:[\overrightarrow{y: T} ; I \vec{N} \vdash U] ; K: U}{\Gamma ;[\overrightarrow{y: T} ; I \vec{N} \vdash U] \vdash \operatorname{fix}_{\alpha}(\vec{y}) \cdot K: U}
$$

Adding fixpoints and cofixpoints with parameters: reduction rules

The reduction rules extend easily:

$$
\begin{array}{llll}
M & \left(\operatorname{fix}_{\alpha}(\vec{y}) \cdot K\right) \vec{N} & \rightarrow & M \\
\left(\operatorname{cofix}_{x}(\vec{y}) \cdot M\right) \vec{N} & K & \rightarrow & M\{\vec{N} / \vec{y}\}\left\{\operatorname{cofix}_{x}(\vec{y}) \cdot M / x\right\}
\end{array}
$$

Adding fixpoints and cofixpoints: the general case

In the non-tail recursive case, as e.g. in $f:=\operatorname{fix}_{f} \lambda n$.match n with $0 \rightarrow 0 \mid$ $S n \rightarrow S(f n)$ end, we need to pass a continuation to the recursive evaluation-context variable. But in $L J_{T}$ a continuation is itself represented by an evaluation-context variable. Hence, we have a dependency of the recursive evaluation-context variable into another evaluation-context variable. This leads to the following generalised syntax:

$$
\begin{array}{ll}
M, N, T, U & ++=\operatorname{cofix}_{x}(\vec{y}) M \\
K & ++=\alpha \mid \operatorname{fix}_{\alpha}(\vec{y} \alpha) K \\
\Delta & ::=\epsilon \mid \Delta, \alpha:[\Gamma ; U \vdash \Delta ; T]
\end{array}
$$

The axiom rule for conclusions does not change much:

$$
\frac{\left(\alpha:\left[\Gamma^{\prime} ; U \vdash \Delta^{\prime} ; T\right]\right) \in \Delta}{\Gamma ;\left[\Gamma^{\prime} ; U \vdash \Delta^{\prime}\right] \vdash \Delta ; \alpha: T}
$$

Adding fixpoints and cofixpoints: the general case

Now, we need to build substitutions referring to evaluation contexts:

$$
\begin{gathered}
\overrightarrow{\Gamma \vdash \epsilon:[; V \vdash] \mapsto[; V \vdash]} \quad \frac{\Gamma \vdash M_{0}: U_{0} \quad \Gamma \vdash \vec{M} \vec{K}:\left[\Gamma^{\prime} ; V \vdash\right]\left\{M_{0} / x_{0}\right\} \mapsto\left[; V^{\prime} \vdash\right]}{\Gamma \vdash M_{0} \vec{M} \vec{K}:\left[x_{0}: U_{0}, \Gamma^{\prime} ; V \vdash\right] \mapsto\left[; V^{\prime} \vdash\right]} \\
\frac{\Gamma ; V_{0} \vdash K: T_{0}}{\Gamma \vdash K_{0} \vec{K}:\left[\Gamma^{\prime} ; V \vdash \alpha:\left[V_{0} \vdash T_{0}\right], \Delta ;\right] \mapsto\left[; V^{\prime} \vdash\right]}
\end{gathered}
$$

And we need to apply these substitutions:

$$
\frac{\Gamma ;\left[\Gamma^{\prime} ; V \vdash \Delta ; T\right] \vdash K^{\prime}: T^{\prime} \quad \Gamma \vdash \vec{M} \vec{M}:\left[\Gamma^{\prime} ; V \vdash \Delta\right] \mapsto\left[; V^{\prime} \vdash\right]}{\Gamma ; V^{\prime} \vdash K^{\prime} \vec{M} \vec{K}: T^{\prime}}
$$

We are now ready to give the general rule for fixpoints:

$$
\frac{\Gamma, \overrightarrow{y: \vec{T}} ; x: I \vec{N} \vdash \beta:[; P(\vec{y}, x) \vdash U], \alpha:[\overrightarrow{y: \vec{T}} ; x: I \vec{N} \vdash \beta:[; P(\vec{y}, x) \vdash U] ; U] ; K: U}{\Gamma ;[\overrightarrow{y: T} ; x: I \vec{N} \vdash \beta:[; P(\vec{y}, x) \vdash U]] \vdash \mathrm{fix}_{\alpha}(\vec{y} \beta) \cdot K: U}
$$

(this complexity is the price to pay for tail-recursive simulation of non tail-recursive fixpoints)

Adding fixpoints and cofixpoints: the general case

The reduction rules does not change much:

$$
M\left(\mathrm{fix}_{\alpha}(\vec{y} \beta) \cdot K\right) \vec{N} K^{\prime} \quad \rightarrow \quad M K\{\vec{N} / \vec{y}\}\left\{K^{\prime} / \beta\right\}\left\{\mathrm{fix}_{\alpha}(\vec{y}) \cdot K / \alpha\right\}
$$

The non tail-recursive example is expressed like this:

$$
\lambda n . n \mathrm{fix}_{\alpha}(\beta) .[0 \rightarrow 0 \mid S n \rightarrow n(\alpha(\tilde{\mu} x .(S x)))]
$$

Note that for building non linear evaluation contexts, we a priori need the following extra rule adapted from $L J_{\mu \tilde{\mu}}^{T}$ to $L J_{T}$:

$$
\frac{\Gamma, x: A \vdash M: B}{\Gamma ; A \vdash \tilde{\mu} x . M: B}
$$

Symmetry of the guard conditions

We have the following symmetry:
Guard condition for fixpoint $=$ recursion traverses at least one left introduction rule

Guard condition for cofixpoint $=$ recursion traverses at least one right introduction rule

For inductive types and fixpoints, termination comes from the interaction between a finite term and an infinite guarded evaluation context.

For coinductive types and cofixpoints, termination comes from the interaction between a guarded infinite term and a finite evaluation context.

Note that in this duality, the difference between inductive and coinductive types is not a built-from-constructor vs built-from-destructors duality but a finite-infinite vs infinite-finite duality.

