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Introduction

- Context: computing with proofs, even beyond intuitionistic logic, even possibly with
side-effects (starting with classical logic)

- Completeness theorems: fundamental theorems connecting syntax and “semantics” (i.e.
syntax from the meta-language)

For instance, in the case of informative-enough models (Kripke/Beth models, phase-
semantics/point-free-topology, Heyting/Boolean algebras, ...), completeness theorems
replicate proofs of validity into proofs of derivability (cf e.g. Normalization-by-Evaluation)

- Gödel’s completeness theorem: rich in its connection with standard axioms (Weak
König’s Lemma, Weak Fan Theorem, Ultrafilter Theorem, Markov’s principle, ...)

- A large corpus of (often disconnected) results in the relative logical strength of ax-
ioms/theorems (so-called reverse mathematics): how to unify them?

- Knowing how to compute with Gödel’s completeness, shall we be able to provide al-
ternative ways to compute with the Weak Fan Theorem, Weak König’s Lemma, Prime
Ideal Theorem?
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Outline

- Reverse mathematics of Gödel’s completeness theorem, in PA2, ZF, HA2,
HA2, IZF, ...

- Computing with Henkin’s proof

- Tarski semantics as “direct-style” for Kripke semantics: towards a computation with side
effects of Gödel’s completeness
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Classical reverse mathematics of the subsystems of second-order arithmetic

(the big five - Simpson 1999)

acronym full name canonical charact. ordinal f.o. fragment
RCA0 Recursive Comprehension Axiom Π0

1-Π
0
1-Separation ωω PRA/IΣ1

WKL0 Weak König’s Lemma Σ0
1-Σ

0
1-Separation ωω PRA/IΣ1

ACA0 Arithmetical Comprehension Axiom Σ0
1-Π

0
1-Separation ε0 PA

ATR0 Arithmetical Transfinite Recursion Σ1
1-Σ

1
1-Separation Γ0

Π1
1−CA0 Π1

1 Comprehension Axiom Σ1
1-Π

1
1-Separation

A typical result in this context (Simpson):

RCA0 ` Gödel’s completeness theorem = Weak König’s Lemma

Moreover:

RCA0 ` full König’s Lemma = ACA0
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Classical reverse mathematics in set theory

Typically about the axiom of choice (e.g. Jech 1973, Howard-Rubin 1998)

 Axiom of choice
Zorn’s lemma
Well-ordering theorem

 ⇒
{

Prime Ideal Theorem
Ultrafilter Theorem

}
⇓ ⇓{

Dependent choices
Bar induction

}
⇒ Countable choice ⇒ Countable choice over a two-element set

⇓ Countable choice over Booleans
Weak König’s lemma
Weak Fan theorem


Typical results in this context:

Henkin (1954): ZF ` Gödel’s completeness theorem = Prime Ideal Theorem
Espindola (2016): ZF ` completeness wrt Kripke models = Prime Ideal Theorem
McCarty (2004): IZF ` Gödel’s completeness ⇒ EM
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Constructive reverse mathematics

Typically done within HA2 with weak choice principles (Veldman’s BIM, Kleene-Vesley’s
WKV, Kreisel-Troelstra’s EL, ...)

Many various results, sometimes looking contradictory:

Gödel (1957), Kreisel (1962): HA2 ` completeness wrt Tarski semantics ⇒ Markov’s
principle

Friedman (1975): HA2 ` completeness wrt Beth models (but... fallible models)

Veldman (1976): HA2 + WFT ` completeness wrt Kripke models (but... with exploding
nodes)

Krivine (1996): HA2 ` Gödel’s completeness (but... finite theory and only ⇒, ∀)
Berardi (1999): HA2 6` Gödel’s completeness if ∨ or ⊥ have their Tarskian semantics

Berardi-Valentini (2004): HA2 ` Prime Ideal Theorem over a countable Boolean algebra
(but with a definition of prime ideal avoiding ∨)
Loeb (2005): WKV ` Weak Fan Theorem = Fan Theorem (!!)

= Gödel’s completeness (but...)

Espindola (2016): IZF ` Gödel’s completeness = EM + Prime Ideal Theorem (but...)
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Different formulation of Gödel’s completeness

- For arbitrary theories, valid implies provable

∀T [∀M( �M T ⇒ �M A)⇒ T ` A]

↪→ version considered by Espindola (2016)

- For recursively enumerable theories, valid implies provable

∀T [∀M( �M T ⇒ �M A)⇒ T ` A]

↪→ equivalent to (a weak form of) Weak Fan Theorem in the presence of ⇒, ∧, ∀
↪→ equivalent to (the usual - strong - form of) Weak Fan Theorem in the presence of ∨
↪→ additionally requires Markov’s principe in the presence of ⊥

- For (recursively enumerable) theories, consistent implies has a model

∀T [T 6` ⊥ ⇒ ∃M �M T ]

Markov’s Principle no longer needed for the case of ⊥
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Different formulation of Gödel’s completeness (continued)

- Weak form of valid implies provable

∀Γ [∀M( �M Γ⇒ �M A)⇒ Γ ` A]

- Provable or has a model

∀T [T ` A ∨ ∃M �M T ∧ ¬A]

↪→ strongly classical

Note: formal proofs of the above statement not all yet written.
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Tarski semantics vs 2-valued semantics

From an intuitionistic reverse math. point of view, it matters how a model is defined:

- a set of propositions?

i.e. M : Form→ Prop

- a functional relation mapping propositions to Booleans?

i.e. M : ΣR : Form× B→ Prop.∀A∃!bR (A, b)

- a function mapping propositions to Booleans?

i.e. M : Form→ B
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Tarski semantics vs 2-valued semantics

Obviously:
Form→ B

⇓

ΣR : Form× B→ Prop.∀A ∃!bR (A, b)

⇓

Form→ Prop

Map f : Form→ B to R(A, b) , (f (A) = b) which is trivially functional

Map R : Form× B→ Prop to X(A) , R(A, true)
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Tarski semantics vs 2-valued semantics

And also:
Form→ B

AC!N,B ⇑

ΣR : Form× B→ Prop.∀A ∃!bR (A, b)

EM ⇑

Form→ Prop

Map X : Form→ Prop to R(A, b) , (b = true⇔ X(A)), this is functional by EM

Map ∀A∃!bR (A, b) to a function by unique choice.

11



On the three ways to formalize subsets

The three different styles applies also to state the Weak König’s Lemma, Weak Fan
Theorem, Boolean Prime Ideal, ...

Intuitionistic reverse mathematics favor the functional form (e.g. Veldman)

Classical reverse mathematics favor the functional relation form (e.g. Simpson)

The predicate form is the easiest to compute with in the case of the above axioms/theorems
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Three corresponding forms of Weak Fan Theorem

(contraposition of Weak König’s Lemma / bar induction on binary trees)

Let T be an arbitrary predicate on B∗ (finite sequences of Booleans)

WFTfun , ∀f ∃nT (f|n) ⇒ ∃N ∀l (|l| = N ⇒ ∃l′ ⊂ l T (l′))

WFTfun−rel , ∀R ∃n∃l ≈n R ∧ T (l) ⇒ ∃N ∀l (|l| = N ⇒ ∃l′ ⊂ l T (l′))

WFTpred , ∀X ∃n∃l ≈n X ∧ T (l) ⇒ ∃N ∀l (|l| = N ⇒ ∃l′ ⊂ l T (l′))

where:

ε ≈0 X

l ≈n X X(n)

l · true ≈n+1 X

l ≈n X ¬X(n)

l · false ≈n+1 X

ε ≈0 R

l ≈n R R(n, b)

l · b ≈n+1 R

f|0 , ε

f|n+1 , f|n · f (n)

Note: We do not care here about the logical complexity of T
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Three forms of Weak Fan Theorem

Thus we have:
WFTpred

EM⇒ WFTfun−rel

AC!N,B⇒ WFTfun

WFTfun ⇒ WFTfun−rel ⇒ WFTpred

WFTfun, considered in intuitionistic reverse mathematics, is equivalent to the full Fan
Theorem on finite (non-necessarily binary) “trees”

WFTfun−rel and WFTpred , both equivalent in classical reverse mathematics, are not equiv-
alent to the corresponding formulation of the full Fan Theorem

Intuitionistically, WFTpred is enough to prove completeness in the presence of ⇒, ∧, ∀
(over recursively enumerable theories)

WFTfun−rel is needed for ∨
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On the respective force of the different formulations of Weak Fan Theorem

After Berger (2009) who isolated the classical part Lfan (“in a binary tree with at most
one infinite branch, we can decide whether it is the left or right subtree which is infinite)
and choice part Cfan of WFT:

Conjecture, for S a class of formula:

Cfan−pred(S) = WFTpred(S)
Lfan(S)
⇒ WFTfun−rel(S)

⇓ AC! ⇓ AC!

Cfan−fun(S)
Lfan(S)
⇒ WFTfun(S)

Similarly, following Ishihara (2005), conjecture:

CWKL−pred(S) = WKLpred(S)
WEM(ΣS)⇒ WKLfun−rel(S)

⇓ AC! ⇓ AC!

CWKL−fun(S)
WEM(ΣS)⇒ WKLfun(S)

with WEM(S) , ¬(A ∧B)⇒ ¬A ∨ ¬B for A,B ∈ S
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Outline

- Reverse mathematics of Gödel’s completeness theorem, in PA2, ZF, HA2, HA2, IZF, ...

- Computing with Henkin’s proof

- Tarski semantics as “direct-style” for Kripke semantics: towards a computation with side
effects of Gödel’s completeness
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The statement of completeness
(weak form, restricted to the negative fragment)

t ∈ T ::= x | ft1 . . . taf
A,B ∈ F ::= Pt1 . . . taP | ⊥̇ | A→̇B | ∀̇xA

A model is a triple (MD,M(f ) ∈ Maf
D ⇒MD,M(P ) ∈ P(MaP

D )). Truth inM is
defined recursively:

[[x]]σM , σ(x)

[[ft1 . . . taf ]]
σ
M , M(f )[[t1]]σM . . . [[taf ]]

σ
M

[[Pt1 . . . taf ]]
σ
M , M(P )[[t1]]σM . . . [[taP ]]σM

[[⊥̇]]σM , ⊥
[[A→̇B]]σM , [[A]]σM ⇒ [[B]]σM
[[∀xA]]σM , ∀t ∈MD [[A]]

σ[x←t]
M

A model is classical, written Class(M) if for each A and σ, [[¬̇¬̇A]]σM ⇒ [[A]]σM.

The completeness statement : ∀A (∀M∀σ Class(M)⇒ [[A]]σM)⇒ [` A]
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The proof (usual presentation)

To prove ` A0, prove instead ¬̇A0 ` ⊥̇.
Reason by contradiction and assume (¬̇A0 ` ⊥̇) ⇒ ⊥, i.e. that the context Γ0 , ¬̇A0

is consistent.

For an enumeration A1, A3, A5, ... of all non-universal formulas and an enumeration
∀̇xA2, ∀̇xA4, ∀̇xA6, ... of all universal formulas, classically build

• Γ2n+1 , Γ2n if Γ2n, A2n+1 ` ⊥̇
• Γ2n+1 , Γ2n, A2n+1 otherwise

• Γ2n+2 , Γ2n+1, (A2n+2[xn/x]→̇∀̇xA2n+2) if Γn, ∀̇xA2n+2 ` ⊥̇
• Γ2n+2 , Γ2n+1, (A2n+2[xn/x]→̇∀̇xA2n+2), ∀̇xA2n+2 otherwise

where the formulas A2n+2[xn/x]→̇∀̇xA2n+2, for xn taken fresh in Γ2n+1 are called Henkin
axioms.

This construction propagates consistency from Γ0 to Γn.
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The proof (usual presentation), continued

Build the infinite theory T , ∪nΓn.

Under the initial assumption that ` A0 is contradictory, one gets that T is consistent.

Define a syntactic model M0 by D , T , M(f )(t1, . . . , taf ) , f (t1, . . . , taf ) and
M(P )(t1, . . . , taP ) , P (t1, . . . , taP ) ∈ T .
One can prove by induction on A that [[A]]M0

iff A ∈ T .
The model is complete in the sense that either A ∈ T or ¬̇A ∈ T , and hence satisfy
Class(M0).

By validity of A0, get [[A0]]M0
, hence A0 ∈ T hence T ` ⊥̇, a contradiction.
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The proof (turned positively)

Let dAe and φ form a Gödel’s numbering of formulas such that dφ(n)e = n. Let xn be a
variable fresh in φ(0), . . . , φ(n). Henkin axioms at step n are defined by taking Θ0 to be
empty and Θn+1 to be Θn unless φ(n) = ∀̇xA in which case it is A[xn/x]⇒ ∀xA,Θn.
Let A0 be the formula we expect a proof of.

Let Fn (virtually) denotes the countermodel built at step n. We define A ∈ Fω to mean
∃n∃Γ ⊂ Fn [Θn,Γ ` A] (“A gets provable at some step of the construction of a context
equiconsistent to ¬̇A0”) where Γ ⊂ Fn is formally defined inductively:

¬̇A0 ⊂ F0

I0
Γ ⊂ Fn

Γ ⊂ Fn+1

IS

Γ ⊂ Fn ∀Γ′ ⊂ Fn [Θn,Γ
′, {A}n ` ⊥̇]⇒ ⊥

Γ, {A}n ⊂ Fn+1

In

where {A}n is A[xn/x] if φ(n) = ∀̇xA and φ(n) otherwise.

The (syntactic) model M0 is defined by D , T , M(f )(t1, . . . , taf ) , f (t1, . . . , taf )

andM(P )(t1, . . . , taP ) , P (t1, . . . , taP ) ∈ Fω.
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The object language

We assume given a (non-minimal) set of appropriate object language constructions:

ȧxi : [Γ, A,Γ′ ` A] (for Γ′ of length i)

ȧx′i : [Γ, A,Γ′ ` A] (for Γ of length i)

ḋn : [Γ ` ¬̇¬̇A] −→ [Γ ` A]

˙abs : [Γ, A ` B] −→ [Γ ` A→̇B]

˙app _→ : [Γ ` A→̇B] −→ [Γ′ ` A] −→ [Γ ∪ Γ′ ` B]

˙drinkern : [A[xn/x]→̇∀̇xA,Γ ` ⊥̇] −→ [Γ ` ⊥̇] if φ(n + 1) = ∀̇xA and xn not in
∀̇xA,Γ

˙drinkern : [Γ ` ⊥] −→ [Γ ` ⊥̇] otherwise
˙app
_∀ : [Γ ` ∀̇xA(x)] −→ ∀t ∈ T [Γ ` A(t)]

π→̇1 : [Γ, A→̇B ` ⊥̇] −→ [Γ ` A]

π→̇2 : [Γ, A→̇B ` ⊥̇] −→ [Γ ` ¬̇B]

˙efq : [Γ ` ⊥̇] −→ [Γ ` A]
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The core of the proof

↓A : A ∈M → A ∈ Fω
↓P (~t) m , m

↓⊥̇ m , ˙efqm
↓A→̇B m , (n, (¬̇A0, A→̇B),

In(injn, (Γ, f, p) 7→
dest ↓B (m(↑A (n,Γ, f, π→̇1 p))) as (n′,Γ′, f ′, p′)

in flushΓ∪Γ′
max(n,n′)(join

ΓΓ′
nn′(f, f

′), ˙app _→(π→̇2 p, p′))
),

ȧx1) where n = dA→̇Be
↓∀̇xA m , dest ↓A[xn/x] (mxn) as (n′,Γ′, f ′, p′)

in (max(n, n′),Γ′, join(¬̇A0)Γ′

nn′ (injn, f
′), ˙app _→(ȧx′0, p

′))

where n = d∀̇xAe

↑A : A ∈ Fω → A ∈M
↑P (~t) (n,Γ, f, p) , (n,Γ, f, p)

↑⊥̇ (n,Γ, f, p) , flushΓ
n(f, p)

↑A→̇B (n,Γ, f, p) , m 7→ dest ↓A m as (n′,Γ′, f ′, p′)

in ↑B (max(n, n′),Γ ∪ Γ′, joinΓΓ′
nn′(f, f

′), ˙app _→(p, p′))

↑∀̇xA (n,Γ, f, p) , t 7→ ↑A[t/x] (n,Γ, f, ˙app
_∀(p, t))
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Auxiliary lemmas

flushΓ
n : Γ ⊂ Fn ∧ [Θn,Γ ` ⊥̇] −→ ⊥

flushΓ
0 (I0, p) , throwα0 p

flushΓ
n+1 (ISf, p) , flushΓ

n(f, ˙drinkern p)

flushΓA
n+1 (In(f, k), p) , k Γ f p

joinΓ1Γ2
n1n2

: Γ1 ⊂ Fn1 ∧ Γ2 ⊂ Fn2 −→ Γ1 ∪ Γ2 ⊂ Fmax(n1,n2)

join¬̇A0¬̇A0
00 I0 I0 , I0

join(Γ1A)(Γ2A)
(n+1)(n+1) In(f1, k1) In(f2, k2) , In(joinΓ1Γ2

nn f1f2, k1)

join(Γ1A)Γ2
(n+1)(n+1) In(f1, k1) ISf2 , In(joinΓ1Γ2

nn f1f2, k1)

joinΓ1(Γ2A)
(n+1)(n+1) ISf1 In(f2, k2) , In(joinΓ1Γ2

nn f1f2, k2)

joinΓ1Γ2
(n+1)(n+1) ISf1 ISf2 , IS(joinΓ1Γ2

nn f1f2)

joinΓ1Γ2
n1n2

ISf1 f2 , IS(join
Γ1Γ2
n′1n2

f1f2) if n1 = n′1 + 1 > n2

join(Γ1A1)Γ2
n1n2 In′1(f1, k1) f2 , In′1(join

Γ1Γ2
n′1n2

f1f2, k1) if n1 = n′1 + 1 > n2

joinΓ1Γ2
n1n2

f1 ISf2 , IS(join
Γ1Γ2
n1n
′
2
f1f2) if n1 < n′2 + 1 = n2

joinΓ1(Γ2A2)
n1n2 f1 In′2(f2, k2) , In′2(join

Γ1Γ2
n1n
′
2
f1f2, k2) if n1 < n′2 + 1 = n2

injn : (¬̇A0) ⊂ Fn
inj0 , I0
injn+1 , IS(injn)
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Final weak completeness result

class0 : (¬̇¬̇A) ∈M0 −→ A ∈M0

class0 m , ↑A (dest ↓¬̇¬̇A m as (n,Γ, f, p) in (n,Γ, f, ḋnp))

complA0 : (∀M∀σ Class(M)⇒ [[A0]]σM) −→ ` A0

complA0 ψ , ḋn( ˙abs(catchα0
dest ↓A0 (ψM0 id class0) as (n,Γ, f, p)

in ˙efq flushΓ
n(f, ˙app _→(ȧx|Γ|−1, p))

))
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Outline

- Reverse mathematics of Gödel’s completeness theorem, in PA2, ZF, HA2, HA2, IZF, ...

- Computing with Henkin’s proof

- Tarski semantics as “direct-style” for Kripke semantics: towards a com-
putation with side effects of Gödel’s completeness
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Preliminary I: Soundness, completeness and semantic normalisation

- (strong completeness ◦ soundness) gives cut-elimination

- For “rich-enough” semantics (Kripke, Beth, point-free topology, phase semantics, ...)
can be turned into semantic normalisation (Berger-Schwichtenberg 1991, C. Coquand
2002, ...), also related to type-directed partial evaluation (Danvy 1996, ...) following the
same proof pattern as in reducibility proofs:

- adequacy/soundness: T ` A implies ([[T ]] implies [[A]]) (for some semantics)
↪→ proved by induction on proofs

- escape lemma/completeness: mutually proving
reflection (↑) : T `neutral A implies [[A]]
reification (↓) : [[A]] implies T `nf A

↪→ by mutual induction on A

Can we do the same w.r.t. Tarskian semantics?
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Preliminary II: Proving with side effects

- Classical logic seen as a side effect:

- Direct style = a control operator (e.g. ċc of type Peirce’s law) [Griffin 90]

- Indirect style = continuation-passing-style/double-negation translation within intuition-
istic logic (K(A) , ¬¬A and (A⇒ B)∗ , A∗ ⇒ K(B∗), etc.)

- This part of the talk:

- Interpreting Kripke forcing translation as indirect style for what is in direct style a
monotonic memory update

- Applying this to obtain a proof with side-effect of Gödel’s completeness theorem as
direct-style presentation of a proof of completeness w.r.t. Kripke semantics
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Kripke forcing translation

Let ≥ be a partial order. A key clause of Kripke forcing is the interpretation of implication:

w  A⇒ B , ∀w′ ≥ w [(w′  A)⇒ (w′  B)]

The transformation

�wA(w) , ∀w′ ≥ wA(w′)

can be seen as a dependent environment-passing-style translation, i.e. as indirect style for
a monotonic memory update effect.
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Environment-passing-translation

E(A) , W ⇒ A

(A⇒ B)∗ , A∗ ⇒ E(B∗)

X∗ , X

(Γ ` A)∗ , Γ∗ ` E(A∗)

η : A⇒ E(A)

ηx , λw.x
>>= : E(A)⇒ (A⇒ E(B))⇒ E(B)

u >>= t , λw.t(uw)w

x∗ , ηx

(λx.t)∗ , ηλx.t∗

(tu)∗ , t∗ >>= λf.(u∗ >>= f )

w∗ , λw.w

(update w := t in u)∗ , t∗ >>= λw.u∗w
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Direct-style for Kripke forcing

A rule for initialising the use of Kripke forcing:

Γ, [b : x ≥ t] ` q : T (x)
Γ ` r : refl ≥
Γ ` s : trans ≥
x fresh in Γ and T (t)

Γ ` setx := t as b/(r,s) in q : T (t)
seteff

A rule for updating:

Γ, [b : x ≥ t(x′)] ` q : T (x)
Γ ` r : t(x′) ≥ x′

[x ≥ u] ∈ Γ for some u
x′ fresh in Γ

Γ ` updatex := t(x) ofx′ as b by r in q : T (t(x))
update

where we wrote T , U for →̇-∀̇-free formulas (= intuitively Σ0
1-formulas = base types)
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Gödel’s completeness
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Object language

We consider here the negative fragment of predicate logic as an object language (we
consider ⊥̇ to be an arbitrary atom and abbreviate ¬̇A , A→̇⊥̇).

t , x | f (t1, ..., tn)

F,G , ⊥̇ | Ṗ (t1, ..., tn) | F→̇G | ∀̇xF
Γ , ε | Γ, F

We take the following inference rules:

Ȧx
Γ,F,Γ′

: (Γ, F ⊂ Γ′)⇒ (Γ′ ` F )
˙App

Γ,F,G
⇒ : (Γ ` F→̇G)⇒ (Γ ` F )⇒ (Γ ` G)

˙Abs
Γ,F,G
⇒ : (Γ, F ` G)⇒ (Γ ` F→̇G)

˙Abs
Γ,x,F
∀ : (Γ ` F )⇒ (x 6∈ FV (Γ))⇒ (Γ ` ∀̇xF )

˙App
Γ,x,t,F
∀ : (Γ ` ∀̇xF )⇒ (Γ ` F [t/x])

Moreover, the following is admissible:
˙weak

Γ′

Γ,F : (Γ ⊂ Γ′)⇒ (Γ ` F )⇒ (Γ′ ` F )

We shall also write rΓ
F for a proof of Γ ⊂ (Γ, F ),
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Tarskian models

A Tarskian modelM is made of a domain DM for interpreting terms, of an interpretation
of function symbols FM(f ) : Daf → D and of an interpretation of atoms PM(Ṗ ) ⊂ DaṖ
(for af , aṖ the arity of f , Ṗ resp.).

Truth is defined by

[[x]]σM , σ(x)

[[ft1 . . . taf ]]
σ
M , FM(f )([[t1]]σM, . . . , [[taf ]]

σ
M)

[[Ṗ (t1, . . . , ta
Ṗ
)]]′

σ

M
, PM(Ṗ )([[t1]]σM, . . . , [[taṖ ]]σM)

[[⊥̇]]′
σ

M , PM(⊥̇)

[[F→̇G]]′σM , [[F ]]′σM ⇒ [[G]]′σM
[[∀̇xF ]]′

σ

M , ∀t ∈MD [[F ]]′
σ[x←t]
M
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Completeness w.r.t Tarskian models

Let Classic be the theory containing ¬̇¬̇F→̇F for all formulas F (atoms are enough).

We define `C F to be Classic `M F in minimal logic.

A Tarskian modelM for classical logic is a Tarskian model which satisfies [[Classic]]′M
(in a classical meta-language, all Tarskian models are classical, but not in an intuitionistic
meta-language).

The statement of completeness w.r.t Tarskian models for classical logic is:

[∀M∀σ ([[Classic]]′
σ
M ⇒ [[F ]]′

σ
M)]⇒ Classic `M F

The usual proof is by contradiction, building a saturated counter-model by enumeration
of the formulas.

The proof with effects we shall consider actually works for arbitrary theories, so that we
shall consider instead the following statement:

(∀M∀σ [[F ]]′
σ
M)⇒ `M F
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Completeness w.r.t. Kripke models
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Kripke models

A Kripke model K is an increasing family of Tarskian models indexed over a set of worlds
WK ordered by ≥K. In the absence of ∨ and ∃, it is enough to take DK constant.

Truth relatively to K at world w is defined by:

[[x]]σK , σ(x)

[[ft1 . . . taf ]]
σ
K , FK(f )([[t1]]σK, . . . , [[taf ]]

σ
K)

w σK Ṗ (t1 . . . ta
Ṗ
) , PK(Ṗ )w([[t1]]σK, . . . , [[taṖ ]]σK)

w σK ⊥̇ , PK(⊥̇)w
w σK F→̇G , ∀w′ ≥K w (w′ σK F ⇒ w′ σK G)

w σK ∀xF , ∀t ∈ KD w σ[x←t]
K F

The statement of completeness w.r.t. Kripke models is:

(∀K∀σ ∀w ∈ WKw σK F )⇒`M F
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Completeness w.r.t Kripke models

The “standard” proof works by building the canonical model K0 defined by taking WK0

to be the typing contexts ordered by inclusion, DK0 to be the terms, KF(f ) to be the
syntactic application of f , and KP(Ṗ )(Γ)(t1, ..., ta

Ṗ
) to be Γ `M Ṗ (t1, ..., ta

Ṗ
)

The main lemma proves Γ `M F ⇐⇒ Γ K0
F by induction on F

↑Γ
F Γ `M F −→ Γ K0

F

↑Γ
Ṗ (~t)

p , p

↑Γ
F→̇G p , Γ′ 7→ h 7→ m 7→ ↑Γ′

G
˙App

Γ′,F,G
⇒ ( ˙weak

Γ′

Γ,F (h, p), ↓Γ′
F m)

↑Γ
∀̇xF p , t 7→ ↑Γ

F [t/x]
˙App

Γ,x,F
∀ (p, t)

↓Γ
F Γ K0

F −→ Γ `M F

↓Γ
Ṗ (~t)

m , m

↓Γ
F→̇G m , ˙Abs

Γ,F,G
⇒ (↓Γ,F

G (m (Γ, F ) rΓ
F (↑Γ,F

F Ȧx
Γ1,F,,Γ(bF ))))

↓Γ
∀̇xF m , ˙Abs

Γ,x,F
∀ (ẏ, ↓Γ

F [z/x] (m ẏ)) ẏ fresh in Γ

And finally:

compl , v 7→ ↓εA (vK0 ∅ ε) : (∀K∀σ ∀w ∈ WKw σK F )⇒`M F

38



Completeness w.r.t. Kripke models in direct-style
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Kripke forcing translation for second-order arithmetic

We consider a second-order arithmetic multi-sorted over first-order datatypes such as N,
lists, formulas, etc., and with primitive recursive atoms written P (t1, ..., taP ).

A,B , X(t1, ..., taX) | P (t1, ..., taP ) | A ∧B | A⇒ B | ∀xA | ∀X A

Let ≥ be a preorder. We extend Kripke forcing to second order quantification.

w � X(t1, ..., taX) , X(w, t1, ..., taX)

w � P (t1, ..., taP ) , P (t1, ..., taP )

w � A ∧B , (w � A) ∧ (w � B)

w � A⇒ B , ∀w′ ≥ w [(w′ � A)⇒ (w′ � B)]

w � ∀xA , ∀xw � A
w � ∀X A , ∀X (mon(X)⇒ w � A)

where mon(X) , ∀w ∀w′ ≥ w (X(w, t1, ..., taX)⇒ X(w′, t1, ..., taX))
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Relating completeness w.r.t Tarskian models to completeness w.r.t. Kripke
models

We get a stronger statement of completeness by considering completeness w.r.t Kripke
models by specifically instantiating WK to be the typing contexts and ≥ to be inclusion
of contexts.

(∀(DK,FK,PK) ∀σ [ε σ(WK,DK,KF ,PK) F ])⇒ `M F

Now, applying forcing shows that

ε x (∀(DM,FM,PM)∀σ �(DM,FM,PM) F )

is equivalent to
∀(DK,FK,PK) ∀σ (ε (WK,DK,KF ,PK) F )

and hence that forcing over the statement of completeness w.r.t. Tarskian models is
equivalent to the instantiation of the set of worlds to typing contexts of completeness
w.r.t. Kripke models
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Excerpt of our meta-language with effects

Γ ` p : A(y) y fresh in Γ

Γ ` λy.p : ∀y A(y)
∀I

Γ ` p : ∀xA(x) t updatable-variable-free or t an updatable variable and A(x) of type 1

Γ ` pt : A(t)
∀E

Γ ` p : A(X) X fresh in Γ

Γ ` p : ∀X A(X)
∀2
I

Γ ` p : ∀X A(X) Γ ` q : monΓB(~y)

Γ ` p : A(X)[B(~y)/X(~y)]
∀2
E

Γ, [b : x ≥ t] ` q : T (x) Γ ` r : refl ≥ Γ ` s : trans ≥ x fresh in Γ and T (t)

Γ ` setx := t as b/(r,s) in q : T (t)
seteff

Γ, [b : x ≥ t(x′)] ` q : T (x) Γ ` r : t(x′) ≥ x′ [x ≥ u] ∈ Γ for some u x′ fresh in Γ

Γ ` updatex := t(x) ofx′ as b by r in q : T (t(x))
update

where C of type 1 means in the grammar C ::= P (t1, ..., taP ) | P (t1, ..., taP )⇒ C | ∀xC and monΓB

means B monotonic for all updatable variables in Γ
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The completeness proof in direct-style

In direct style, K0 is the modelM0 defined by PM(Ṗ )(t1, ..., ta
Ṗ
) , Γ ` Ṗ (t1, ..., ta

Ṗ
)

for Γ a given updatable variable

↑F Γ `M F −→ [[F ]]′M0

↑P (~t) g , g

↑F→̇G g , m 7→ ↑G ˙App
Γ,F,G
⇒ (g, ↓F m)

↑∀̇xF g , t 7→ ↑F [t/x]
˙App

Γ,x,F
∀ (g, t)

↓F [[F ]]′M0
−→ Γ `M F

↓P (~t) m , m

↓F→̇G m , ˙Abs
Γ,F,G
⇒ (updateΓ:=(Γ, F ) ofΓ1 as bF by rΓ

F in ↓G (m (↑F Ȧx
Γ1,F,,Γ(bF ))))

↓∀̇xF m , ˙Abs
Γ,x,F
∀ (ẏ, ↓F [z/x] (m ẏ))

compl , v 7→ setΓ := ε as b/(r,s) in ↓εF (vM0 ∅)

Obviously, the resulting proof in the object language is a reification of the proof of validity
as in Normalisation-by-Evaluation / semantic normalisation [C. Coquand 93, Danvy 96,
Altenkirch-Hofmann 96, Okada 99, ...] 43



’e.

Status of the meta-language with update effect

- A certain degree of freedom in the design

- Basic version using only Kripke forcing is inconsistent with classical logic

- Local use of classical reasoning providing Markov’s principle and Double Negation Shift
are possible using Ilik’s variant of Kripke forcing

- A variant consistent with classical logic using Cohen forcing (but then completeness of
intuitionistic logic w.r.t. Tarskian semantics not any more provable)

- Justification of the different variants by translation within intuitionistic logic

- Can be equipped with a reduction semantics (derived from the forcing interpretation)
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