Computing with Gödel's completeness theorem

Hugo Herbelin
(based on joint work with Danko llik)

IMJ-PRG, Paris, 3 December 2018

Introduction

The completeness of classical first-order logic w.r.t. Tarskian models

First proof by Gödel [1929]

- reasoning on the prenex form + induction on the number of alternation of quantifiers + reasoning by contradiction

Standard proof by Henkin [1949]

- reasoning by contradiction + construction of a counter-model by enumeration of the formulas over a language extended with Henkin constants coming from the skolemisation of the drinkers' paradox $(\exists x(P(x) \Rightarrow \forall y P(y)))$.

Tableaux-based proofs by Beth [1955], Hintikka [1955], Schütte [1956], Kanger [1957]

- building a tableau + reasoning by contradiction to show it has no infinite branch

Excerpt of alternative proofs

- proofs by Mostowski [1948], Rasiowa-Sikorski [1950], relying on the ultrafilter theorem
- a generic abstract proof by Joyal [1978] (with Tarskian completeness for coherent logic behind the scene?)

Different formulations of completeness

One of the following three classically equivalent statements
S_{1}. Formula A true in all models of theory T implies A provable from (a finite subset) of T
S_{2}. Theory T consistent implies T has a model
(model-theoretic view)
S_{3}. Theory T either is inconsistent or has a model (proof search view)

Constructivisability of the different formulations of completeness

It happens that S_{2} is constructive (the model can be "constructed" as a particular predicate and proved to be a model when the object language has only negative connectives and the language is countable).
S_{3} is strongly classical as the disjunction is not decidable. However, this does not exclude computing with, since classical logic is computational: one could compute with it when completeness is used as a lemma in the proof of a Σ_{1}^{0} formula.
S_{1} is the statement for which we are looking for a computational content.

Logical strength of completeness

- Kreisel [1962], after Gödel [1957]: S_{1} for an empty theory and the object language of negative connectives is equivalent to Markov's principle over intuitionistic second-order arithmetic
- Generalised by McCarty [2008]: S_{1} for recursively enumerable theories over the language of negative connectives is equivalent to Markov's principle over intuitionistic second-order arithmetic
- McCarty [2008]: using non-decidable theories, S_{1} implies classical logic
- Simpson [1999]: strong completeness for a countable language is classically equivalent to weak König's lemma over $R C A_{0}$
- Henkin [1999]: strong completeness for an uncountable theory (hence for uncountable language) classically implies the Boolean Prime Ideal axiom

Avoiding the need for Markov's principle

Krivine's proof of completeness for an empty theory [1996]

- restricted to minimal classical logic (no $\perp \Rightarrow A$) so that negation does not have to be interpreted; Friedman's A-translation [1978] is then applicable to get rid of Markov's principle
- analysed by Berardi and Valentini [2001]: Krivine adds one extra (degenerated) model, the always-true model (similar to Friedman's fallible models and Veldman's exploding nodes in intuitionistic logic semantics)
- the modified statement is classically equivalent to the original one but does not need Markov's principle
- formalised in the PhoX proof assistant and later in Coq

The statement of completeness

(empty theory, countable language, restricted to the $\dot{\rightarrow}$-i-ウ fragment)

$$
\begin{aligned}
& t \in \mathcal{T e r m}::=x \mid f\left(t_{1}, \ldots, t_{\text {ar }_{f}}\right) \\
& A, B \in \mathcal{F}::=P\left(t_{1}, \ldots, t_{a r_{P}}\right)|\dot{\perp}| A \rightarrow B \mid \dot{\forall} x A
\end{aligned}
$$

A model is a quadruple $\left(\mathcal{M}_{D}, \mathcal{F}_{\mathcal{M}}(f) \in \mathcal{M}_{D}^{a r_{f}} \longrightarrow \mathcal{M}_{D}, \mathcal{F}_{\mathcal{M}}(P) \in \mathcal{P}\left(\mathcal{M}_{D}^{a r_{P}}\right), \perp_{\mathcal{M}} \in \mathcal{P}(\{\emptyset\})\right)$. Truth in \mathcal{M} is defined recursively:

$$
\begin{array}{ll}
\llbracket x \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \sigma(x) \\
\llbracket f\left(t_{1}, \ldots, t_{a r_{f}}\right) \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \mathcal{F}_{\mathcal{M}}(f)\left(\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\sigma}, \ldots, \llbracket t_{t a r} \rrbracket_{\mathcal{M}}^{\sigma}\right) \\
\llbracket P\left(t_{1}, \ldots, t_{a r_{f}}\right) \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \mathcal{P}_{\mathcal{M}}(P)\left(\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\sigma}, \ldots, \llbracket t_{a r_{P}} \rrbracket_{\mathcal{M}}^{\sigma}\right) \\
\llbracket \dot{ } \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \perp_{\mathcal{M}} \\
\llbracket A \rightarrow B \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \llbracket A \rrbracket_{\mathcal{M}}^{\sigma} \Rightarrow \llbracket B \rrbracket_{\mathcal{M}}^{\sigma} \\
\llbracket \dot{\forall} x A \rrbracket_{\mathcal{M}}^{\sigma} & \triangleq \forall t \in \mathcal{M}_{D} \llbracket A \rrbracket_{\mathcal{M}}^{\sigma[\mathcal{x}-t]}
\end{array}
$$

A model is classical on σ, written $\operatorname{Class}(\mathcal{M})$ if for each $A, \llbracket \neg \neg A \rrbracket_{\mathcal{M}}^{\sigma} \Rightarrow \llbracket A \rrbracket_{\mathcal{M}}^{\sigma}$ (and in particular, it is exploding: $\left.\perp_{\mathcal{M}} \Rightarrow \llbracket A \rrbracket_{\mathcal{M}}^{\sigma}\right)$.
A model satisfies theory T on σ, written $\llbracket T \rrbracket_{\mathcal{M}}^{\sigma}$ if $\llbracket B \rrbracket_{\mathcal{M}}^{\sigma}$ for all $B \in T$.
The completeness statement : $\forall T \forall A\left(\forall \mathcal{M} \forall \sigma\left(\operatorname{Class}(\mathcal{M}) \wedge \llbracket T \rrbracket_{\mathcal{M}}^{\sigma} \Rightarrow \llbracket A \rrbracket_{\mathcal{M}}^{\sigma}\right) \Rightarrow T \vdash A\right)$

Remarks on the formulation

We placed ourselves in intuitionistic second-order arithmetic, interpreting predicates by predicates, defining truth recursively.

Some authors reason instead in the arithmetic of types of rank 2 and define $\mathcal{P}_{\mathcal{M}}(P)$ as a Boolean function in $\mathcal{M}_{D}^{\text {ar } P} \Rightarrow$ bool. The completeness proof then needs a reification axiom $\forall P \exists f . \forall x(P(x) \Longleftrightarrow f(x)=t r u e)$. This can be obtained from the axiom of unique choice (AC!) and excluded-middle and makes the metatheory actually equivalent to second-order arithmetic. To avoid having to computationally interpret reification, what should be doable in $d P A^{\omega}$ (see LICS 2012), we prefer to directly reason in second-order arithmetic.
It is also common to replace $\mathcal{P}_{\mathcal{M}}$ by a set of formulas enriched over \mathcal{D} such that:

$$
\begin{array}{ll}
\dot{\perp} \in \mathcal{P}_{\mathcal{M}} & \leftrightarrow \perp \\
A \rightarrow B \in \mathcal{P}_{\mathcal{M}} & \leftrightarrow A \in \mathcal{P}_{\mathcal{M}} \Rightarrow B \in \mathcal{P}_{\mathcal{M}} \\
\dot{\forall} x A \in \mathcal{P}_{\mathcal{M}} & \leftrightarrow \forall t A[t / x] \in \mathcal{P}_{\mathcal{M}} \\
A \in \mathcal{P}_{\mathcal{M}} & \leftrightarrow \neg \neg A \in \mathcal{P}_{\mathcal{M}}
\end{array}
$$

Our approach has both the advantage of avoiding to consider formulas enriched over \mathcal{D} and to make the connection with intuitionistic models (e.g. Kripke) closer.

Part I

Analysis of Henkin's proof

Henkin's proof (usual presentation)

To prove $T \vdash A_{0}$, prove instead $\dot{\neg} A_{0}, T \vdash \dot{\perp}$, using the abbreviation $\neg B \triangleq B \dot{\rightarrow} \dot{\perp}$.
Reason by contradiction (Markov's principle) and assume $\left(\neg A_{0}, T \vdash \mathrm{i}\right) \Rightarrow \perp$, i.e. that the context $\Gamma_{0} \cup T$ where $\Gamma_{0} \triangleq \neg A_{0}$ is consistent.

For an enumeration $\phi(0) \triangleq \dot{\forall} x B_{0}, \phi(2) \triangleq \dot{\forall} x B_{2}, \ldots$ of all universal formulas and $\phi(1) \triangleq$ $A_{1} \rightarrow B_{1}, \phi(3) \triangleq A_{3} \dot{\rightarrow} B_{3}$, \ldots of all implicative formulas, classically build:

- $\Gamma_{2 n+1} \triangleq \Gamma_{2 n},\left(B_{2 n}\left[x_{n} / x\right] \rightarrow \dot{\forall} x B_{2 n}\right)$
- $\Gamma_{2 n+2} \triangleq \Gamma_{2 n+1}$ if $\Gamma_{2 n+1}, A_{2 n+1} \rightarrow B_{2 n+1}, T \vdash \mathrm{\perp}$
- $\Gamma_{2 n+2} \triangleq \Gamma_{2 n+1}, A_{2 n+1} \dot{\rightarrow} B_{2 n+1}$ otherwise
where the formulas $B_{2 n}\left[x_{n} / x\right] \dot{\rightarrow} \dot{\forall} \times B_{2 n}$, for x_{n} taken fresh in all $\phi(i)$ for $i<2 n$ are Henkin axioms (no need for fresh constants, fresh variables are enough).

This construction propagates consistency from $\Gamma_{0} \cup T$ to $\Gamma_{n} \cup T$.

The proof (usual presentation), continued

Build the infinite theory $\Gamma_{\omega} \triangleq \cup_{n}\left(\Gamma_{n} \cup T\right)$.
Under the initial assumption that $T \vdash A_{0}$ is contradictory, one gets that Γ_{ω} is consistent.
Define a syntactic model \mathcal{M}_{0} by

$$
\begin{array}{ll}
\mathcal{D} & \triangleq \mathcal{T e r m} \\
\mathcal{F}_{\mathcal{M}}(f)\left(t_{1}, \ldots, t_{a r_{f}}\right) & \triangleq f\left(t_{1}, \ldots, t_{a r_{f}}\right) \\
\mathcal{P}_{\mathcal{M}}(P)\left(t_{1}, \ldots, t_{a r_{P}}\right) & \triangleq P\left(t_{1}, \ldots, t_{a_{P}}\right) \in \Gamma_{\omega} \\
\perp_{\mathcal{M}} & \triangleq \perp
\end{array}
$$

Using the converse $\lceil A\rceil$ of the Gödel's numbering of formulas, one proves by induction on A that $\llbracket A \rrbracket_{\mathcal{M}_{0}}^{i d}$ iff $A \in \Gamma_{\omega}$.
The model is complete in the sense that $\dot{\neg} A \notin \Gamma_{\omega}$ implies $A \in \Gamma_{\omega}$. Hence it satisfies $\operatorname{Class}\left(\mathcal{M}_{0}\right)$.

The model satisfies T since $T \subset \Gamma_{\omega}$.
By validity of A_{0}, get $\llbracket A_{0} \rrbracket_{\mathcal{M}_{0}}^{\mathrm{id}}$, hence $A_{0} \in \Gamma_{\omega}$, hence $\Gamma_{\omega} \vdash \dot{\perp}$, a contradiction.

What is the computational meaning of this proof?

Finally, for A_{0} provable in T, is the model built consistent or not?
Obviously no!
If we turn the proof positively, what it shows is that $\Gamma_{\omega} \vdash \mathrm{i}$ implies $\dot{\neg} A_{0}, T \vdash \dot{L}$.
That some $\phi(2 n+1)$ has been added to the context reduces to have $\left(\Gamma_{2 n}, \phi(2 n+1) \vdash \dot{L}\right) \Rightarrow \perp$ under the assumption that $\left(\neg A_{0}, T \vdash \dot{)}\right) \Rightarrow \perp$.

Turned positively, this means that $\Gamma_{2 n}$ can be extended as soon as we know how to get rid of the extension.

Otherwise said, the model construction collects continuations.

The proof (an optimisation)

In practice, we do not need to characterize the elements of Γ_{n} and Γ_{ω} but only the provability predicate that Γ_{ω} generates. This means that we only need to know when a given finite context Γ is in Γ_{n}, which can simply be defined by the following (overlapping) clauses:

- $\Gamma \subset \Gamma_{n+1}$ whenever $\Gamma \subset \Gamma_{n}$
- $\Gamma, B_{2 n}\left[x_{n} / x\right] \rightarrow \dot{\forall} \times B_{2 n} \subset \Gamma_{2 n+1}$ whenever $\Gamma \subset \Gamma_{2 n}$
- $\Gamma, A_{2 n+1} \rightarrow B_{2 n+1} \subset \Gamma_{2 n+2}$ whenever $\Gamma \subset \Gamma_{2 n+1}$ and $\Gamma_{2 n+1}, A_{2 n+1} \rightarrow B_{2 n+1} \vdash \dot{\operatorname{implies}} \rightarrow A_{0} \vdash \dot{\text { i. }}$ The condition $\Gamma_{2 n+1}, A_{2 n+1} \dot{\rightarrow} B_{2 n+1} \vdash \mathrm{~L}$ itself reduces to the existence of $\Gamma \subset \Gamma_{2 n+1}$ such that $\Gamma, A_{2 n+1} \dot{\rightarrow} B_{2 n+1}+\dot{\perp}$

We can then define $A \in \Gamma_{\omega}$ to mean $\exists n \exists \Gamma \subset \Gamma_{n}(\Gamma, T \vdash A)$ ("A gets provable at some step of the construction of a context $\Gamma_{n} \cup T$ equiconsistent to $\neg A_{0} \cup T^{\prime \prime}$).

The proof (bypassing the need for Markov's principle)

We take the following definition of the syntactic model \mathcal{M}_{0} with exploding nodes:

$$
\begin{aligned}
\mathcal{D} & \triangleq \mathcal{T e r m} \\
\mathcal{F}_{\mathcal{M}}(f)\left(t_{1}, \ldots, t_{a r_{f}}\right) & \triangleq f\left(t_{1}, \ldots, t_{a r_{f}}\right) \\
\mathcal{P}_{\mathcal{M}}(P)\left(t_{1}, \ldots, t_{a r_{P}}\right) & \triangleq P\left(t_{1}, \ldots, t_{a r_{P}}\right) \in \Gamma_{\omega} \\
\perp_{\mathcal{M}} & \triangleq \dot{\mathcal{L} \in \Gamma_{\omega}}
\end{aligned}
$$

Giving notations to express the computational contents

We reformulate $\Gamma \subset \Gamma_{n}$ as an "inductive predicate" so as to be able to manipulate proof constructors as data:

$$
\begin{gathered}
\frac{\Gamma \subset \Gamma_{n}}{\dot{\neg} A_{0} \subset \Gamma_{0}} I_{0} \\
\frac{\Gamma \subset \Gamma_{2 n+1}}{\Gamma, A\left(x_{n}\right) \dot{\rightarrow} \dot{\forall} x A(x) \subset \Gamma_{2 n+1}} I_{H} \\
\exists \Gamma^{\prime}\left(\Gamma^{\prime} \subset \Gamma_{2 n+1} \wedge \Gamma^{\prime}, A \dot{\rightarrow} B, T \vdash \dot{\mathrm{~L}}\right) \Rightarrow\left(\dot{\neg} A_{0}, T \vdash \dot{\mathrm{i}}\right) \\
\Gamma, A \rightarrow B \subset \Gamma_{2 n+2} \\
I \Rightarrow
\end{gathered}
$$

where $\phi(2 n) \equiv \dot{\forall} x A(x)$ in I_{\forall} and $\phi(2 n+1) \equiv A \rightarrow B$ in I_{\Rightarrow}.

The object language

We assume given a (non-minimal) set of appropriate object language constructions, parametrized by a recursively enumerable theory T :

```
\(\mathrm{ax}^{+}: A \in T \longrightarrow[\Gamma, T \vdash A]\)
\(\mathrm{ax}_{i}:\left[\Gamma, A, \Gamma^{\prime}, T \vdash A\right] \quad\left(\right.\) for \(\Gamma^{\prime}\) of length \(\left.i\right)\)
\(\mathrm{ax}_{i}^{\prime}:\left[\Gamma, A, \Gamma^{\prime}, T \vdash A\right] \quad(\) for \(\Gamma\) of length \(i\) )
\(\mathrm{din}:[\Gamma, T \vdash \dot{\neg} \dot{\neg} A] \longrightarrow[\Gamma, T \vdash A]\)
abis : \([\Gamma, A, T \vdash B] \longrightarrow[\Gamma, T \vdash A \rightarrow B]\)
app \(=:[\Gamma, T \vdash A \dot{\rightarrow} B] \longrightarrow\left[\Gamma^{\prime}, T \vdash A\right] \longrightarrow\left[\Gamma \cup \Gamma^{\prime}, T \vdash B\right]\)
drinker \(_{n}:\left[B_{2 n}\left[x_{n} / x\right] \dot{\rightarrow} \dot{\forall} x B_{2 n}, \Gamma, T \vdash \dot{\perp}\right] \longrightarrow[\Gamma, T \vdash \dot{\perp}] \quad\) where \(\phi(2 n)=\dot{\forall} x B_{2 n}\) and \(x_{n}\) as
before
\(\operatorname{app}^{\forall}:[\Gamma, T \vdash \dot{\forall} x A(x)] \longrightarrow \forall t \in \operatorname{Term}[\Gamma, T \vdash A(t)]\)
\(\pi_{1}^{\vec{\rightarrow}}:[\Gamma, A \dot{\rightarrow} B, T \vdash \dot{\perp}] \longrightarrow[\Gamma, T \vdash A]\)
\(\pi_{2}^{\dot{\vec{~}}}:[\Gamma, A \dot{\rightarrow} B, T \vdash \dot{\perp}] \longrightarrow[\Gamma, T \vdash \dot{\neg} B]\)
```

The core of the proof: $\llbracket A \rrbracket_{\mathcal{M}_{0}}^{\text {id }}$ iff $A \in \Gamma_{\omega}$

```
\(\downarrow_{A}: \llbracket A \rrbracket_{\mathcal{M}_{0}}^{i d} \quad \rightarrow A \in \Gamma_{\omega}\)
\(\downarrow_{P(\vec{t})} \quad m \quad \triangleq m\)
\(\downarrow_{\perp} \quad m \quad \triangleq m\)
\(\downarrow_{A \rightarrow B} m \quad \triangleq\left(n,\left(\neg A_{0}, A \dot{\rightarrow} B\right)\right.\),
        \(I_{n}\left(\operatorname{inj}_{n},(\Gamma, f, p) \mapsto \begin{array}{l}\operatorname{dest} \downarrow_{B}\left(m\left(\uparrow_{A}\left(n, \Gamma, f, \pi_{i}^{\prime} p\right)\right) \text { as }\left(n^{\prime}, \Gamma^{\prime}, f^{\prime}, p^{\prime}\right)\right. \\ \text { in flush } \max ^{\Gamma\left(n, n^{\prime}\right)}\left(\operatorname{join}_{n n^{\prime}}^{\Gamma^{\prime}}\left(f, f^{\prime}\right), \operatorname{app} \Rightarrow\left(\pi_{2}^{\rightarrow} p, p^{\prime}\right)\right)\end{array}\right)\),
        \(\left.\mathrm{a}_{1}\right) \quad\) where \(n=\lceil A \rightarrow B\rceil\)
\(\downarrow_{\dot{\forall x A}} m \quad \triangleq \operatorname{dest} \downarrow_{A\left[x_{n} / x\right]}\left(m x_{n}\right)\) as \(\left(n^{\prime}, \Gamma^{\prime}, f^{\prime}, p^{\prime}\right)\)
    in \(\left(\max \left(n, n^{\prime}\right), \Gamma^{\prime}, \operatorname{join}_{n n^{\prime}}^{\left(\dot{\left(i A_{0}\right)} \Gamma^{\prime}\right.}\left(\mathrm{inj}_{n}, f^{\prime}\right), \operatorname{app} \Rightarrow\left(\mathrm{ax}_{0}^{\prime}, p^{\prime}\right)\right)\)
                                    where \(n=\lceil\dot{\forall} x A\rceil\)
\(\uparrow_{A}: A \in \Gamma_{\omega} \quad \rightarrow \llbracket A \rrbracket_{\mathcal{M}_{0}}^{i d}\)
\(\uparrow_{P(\vec{t})}(n, \Gamma, f, p) \triangleq(n, \Gamma, f, p)\)
\(\uparrow_{i} \quad(n, \Gamma, f, p) \triangleq(n, \Gamma, f, p)\)
\(\uparrow_{A \rightarrow B}(n, \Gamma, f, p) \triangleq m \mapsto \operatorname{dest} \downarrow_{A} m\) as \(\left(n^{\prime}, \Gamma^{\prime}, f^{\prime}, p^{\prime}\right)\)
in \(\uparrow_{B}\left(\max \left(n, n^{\prime}\right), \Gamma \cup \Gamma^{\prime}, \operatorname{join}_{n n^{\prime}}^{\Pi^{\prime}}\left(f, f^{\prime}\right), \operatorname{app} \Rightarrow\left(p, p^{\prime}\right)\right)\)
\(\uparrow_{\forall_{x A}}(n, \Gamma, f, p) \triangleq t \mapsto \uparrow_{A[t / x]}\left(n, \Gamma, f, \operatorname{app}^{\neq}(p, t)\right)\)
```

Auxiliary lemma: propagating an inconsistency at level n to level 0

$\mathrm{flush}_{n}^{\Gamma}$	$: \Gamma \subset \Gamma_{n} \wedge[\Gamma, T \vdash \dot{\perp}]$	\longrightarrow	$\dot{A} A_{0}, T \vdash \dot{\perp}$
$\mathrm{flush}_{0}^{\Gamma}$	$\left(\mathrm{I}_{0}, p\right)$	\triangleq	p
$\mathrm{flush}_{n+1}^{\Gamma}$	$\left(\mathrm{I}_{\mathrm{S}} f, p\right)$	\triangleq	$\mathrm{flush}_{n}^{\Gamma}(f, p)$
$\mathrm{flush}_{2 n+1}^{\Gamma, A}$	$\left(\mathrm{I}_{\forall} f, p\right)$	$\triangleq \mathrm{flush}_{2 n}\left(f, \operatorname{drinker}_{x_{n}} p\right)$	
$\mathrm{flush}_{2 n+2}^{\Gamma, A}$	$\left(\mathrm{I}_{\Rightarrow}(f, k), p\right)$	\triangleq	$k(f, p)$

Auxiliary lemma: joining contexts in binary rules

Auxiliary lemma: $\neg A_{0}$ is in all contexts

$$
\begin{aligned}
& \operatorname{inj}_{n}:\left(\dot{\neg}_{0}\right) \subset \Gamma_{n} \\
& \text { inj }_{0} \triangleq \mathrm{I}_{0} \\
& \text { inj }_{n+1} \triangleq \mathrm{I}_{\mathrm{S}}\left(\mathrm{inj}_{n}\right)
\end{aligned}
$$

Final completeness result for an empty theory

$$
\begin{aligned}
& \mathrm{class}_{0}: \forall A \quad \llbracket \dot{\neg} \dot{\neg} A \rrbracket_{\mathcal{M}_{0}}^{\mathrm{id}} \longrightarrow \llbracket A \rrbracket_{\mathcal{M}_{0}}^{\mathrm{id}} \\
& \operatorname{class}_{0} A \quad m \quad \triangleq \uparrow_{A}\left(\operatorname{dest} \downarrow_{\dashv \neg A} m \operatorname{as}(n, \Gamma, f, p) \text { in }(n, \Gamma, f, \operatorname{din} p)\right) \\
& \text { theory }_{0}: \forall B \quad B \in T \longrightarrow \llbracket B \rrbracket_{\mathcal{M}_{0}}^{\mathrm{id}} \\
& \text { theory }_{0} \quad B \quad v \quad \triangleq \uparrow_{B}\left(0, \neg A_{0}, I_{0}, \mathrm{ax}^{+}(v)\right) \\
& \operatorname{compl}_{\mathrm{A}_{0}}:\left(\forall \mathcal{M} \forall \sigma \operatorname{Class}(\mathcal{M}) \wedge \llbracket T \rrbracket_{\mathcal{M}}^{\sigma} \Rightarrow \llbracket A_{0} \rrbracket_{\mathcal{M}}^{\sigma}\right) \longrightarrow \vdash A_{0} \\
& \text { let } \psi_{0}:=\psi \mathcal{M}_{0} \text { id class }{ }_{0} \text { theory }_{0} \text { in } \\
& \operatorname{compl}_{\mathrm{A}_{0}} \quad \psi \quad \triangleq \operatorname{din}\left(\operatorname { a b s } \left(\operatorname{dest} \downarrow_{A_{0}} \psi_{0} \operatorname{as}(n, \Gamma, f, p)\right.\right. \\
& \text { in } \operatorname{flush}_{n}^{\Gamma}\left(f, \operatorname{app} \Rightarrow\left(\mathrm{ax}_{|\Gamma|-1}, p\right)\right)
\end{aligned}
$$

Remarks about the computational content

If A_{0} is provable, then the countermodel (virtually) built is actually the degenerated countermodel that contains all formulas, including \dot{i}.

Along the computational interpretation of Markov's principle, reasoning classically by assuming $\left[\vdash A_{0}\right] \Rightarrow \perp$ is the same as providing an exception which returns a derivation of $\left[\vdash A_{0}\right]$ as soon as a contradiction is obtained. Along Friedman's A-translation, this amounts to reinterpret \perp as the formula $\left[\vdash A_{0}\right]$.

Computationally, the proof of a negation can be seen as a continuation. Combined with the computational interpretation of Markov's principle, this is the same as a continuation that eventually returns a derivation of $\left[\vdash A_{0}\right]$.

In particular, a proof that some finite section $\neg A_{0}$, Γ of the countermodel is consistent is the same as a continuation that transforms a derivation of $\left[\neg A_{0}, \Gamma, T \vdash \mathrm{i}\right]$, that is of $\left[\Gamma, T \vdash A_{0}\right]$, into a derivation of $\left[\vdash A_{0}\right]$.

More remarks about the computational content

The ordering of formulas has an effect on the order of application of continuations: continuations are applied in the decreasing order of the Gödel number of the formulas.

In case of branching, i.e. in the case of modus ponens, if two continuations are available at level n, the join function arbitrary chooses one of them. In particular, some subproofs of the initial meta-proof might be lost and replaced by an other proof of the same formula in the same original meta-proof.

Compared to the completeness proof with respect to Kripke semantics where the world is locally extended with the knowledge of A to show that $A \dot{\rightarrow} B$ is provable, here, in the completeness for two-valued semantics, one extends the (counter)knowledge Γ with $A \dot{\rightarrow} B$ but altogether with a proof that contradicting $\Gamma, A \rightarrow B$ (in the sense of a derivation of $\Gamma, A \rightarrow B, T \vdash \dot{\text {) }}$) eventually reduces to a derivation of $\vdash A_{0}$.

It is worth noticing that the definition of $\Gamma \subset \Gamma_{n}$ is of high implicational complexity. Due to the contravariance in the clause I_{n}, the definition of $\Gamma \subset \Gamma_{n+1}$ involves implications nested at level n. Henceforth, the definition of $A \in \Gamma_{\omega}$ is a formula whose implication nesting depth is not finite. Logically, it is however a Σ_{1}^{0} formula.

Remarks about the Henkin axioms

Cutting Henkin axiom $A\left[x_{n} / x\right] \dot{\rightarrow} \dot{\forall} x A$ with drinkers' paradox $\exists y(A[y / x] \rightarrow \dot{\forall} x A)$ can be seen as a way to delegate the insurance of the (moral) freshness of x_{n} and the ability to go from $A\left[x_{n} / x\right]$ to $\dot{\forall} x A$ even when in a context where other occurrences of x_{n} might occur (namely the context $\Gamma^{\prime} \subset \Gamma_{n^{\prime}}$ in the $\dot{\forall}$ clause of \downarrow). Interestingly, eliminating a cut with $\exists y(A[y / x] \dot{\rightarrow} \dot{\forall} x A)$ will rename the x_{n} whose occurrences are possibly non-fresh using names that are actually fresh and from which $\dot{\forall} x A$ can correctly be inferred.

Intuition about the computation content

Part II

A proof with side effects of completeness with respect to Tarski semantics

Completeness w.r.t. Kripke models

Kripke models

A Kripke model \mathcal{K} is an increasing family of Tarskian models indexed over a set of worlds $\mathcal{W}_{\mathcal{K}}$ ordered by $\geq_{\mathcal{K}}$. In the absence of \vee and \exists, it is enough to take $\mathcal{D}_{\mathcal{K}}$ constant.

Truth relatively to \mathcal{K} at world w is defined by:

$$
\begin{array}{ll}
\llbracket x \rrbracket_{\mathcal{K}}^{\sigma} & \triangleq \sigma(x) \\
\llbracket f t_{1} \ldots t_{a_{f}} \|_{\mathcal{K}}^{\sigma} & \triangleq \mathcal{F}_{\mathcal{K}}(f)\left(\llbracket t_{1} \rrbracket_{\mathcal{K}}^{\sigma}, \ldots, \llbracket t_{a_{f}} \rrbracket_{\mathcal{K}}^{\sigma}\right) \\
w \Vdash_{\mathcal{K}}^{\sigma} \dot{P}\left(t_{1} \ldots t_{a_{\dot{p}}}\right) & \triangleq \mathcal{P}_{\mathcal{K}}(\dot{P})(w)\left(\llbracket t_{1} \rrbracket_{\mathcal{K}}^{\sigma}, \ldots, \llbracket t_{a_{\dot{p}}} \rrbracket_{\mathcal{K}}^{\sigma}\right) \\
w \Vdash_{\mathcal{K}}^{\sigma} \dot{\perp} & \triangleq \perp_{\mathcal{K}}(w) \\
w \Vdash_{\mathcal{K}}^{\sigma} A \dot{A} B & \triangleq \forall w^{\prime} \geq \mathcal{K} w\left(w^{\prime} \Vdash_{\mathcal{K}}^{\sigma} A \Rightarrow w^{\prime} \Vdash_{\mathcal{K}}^{\sigma} B\right) \\
w \Vdash_{\mathcal{K}}^{\sigma} \forall x A & \triangleq \forall t \in \mathcal{K}_{D} w \Vdash_{\mathcal{K}}^{\sigma x K_{H}} A
\end{array}
$$

The statement of completeness w.r.t. Kripke models for an empty theory is:

$$
\left(\forall \mathcal{K} \forall \sigma \forall w \in \mathcal{W}_{\mathcal{K}} w r_{\mathcal{K}}^{\sigma} A\right) \Rightarrow \vdash_{M} A
$$

Taking a natural deduction as object language

We take the following inference rules:

$$
\begin{aligned}
& \dot{A x}^{\Gamma, A, \Gamma^{\prime}} \quad: \quad\left(\Gamma, A \subset \Gamma^{\prime}\right) \Rightarrow\left(\Gamma^{\prime} \vdash A\right) \\
& \mathrm{App}_{\Rightarrow}^{\Gamma, A, B}:(\Gamma \vdash A \rightarrow B) \Rightarrow(\Gamma \vdash A) \Rightarrow(\Gamma \vdash B) \\
& \mathrm{A} \dot{\mathrm{~b}} \mathrm{~S}_{\Rightarrow}^{\Gamma, A, B}:(\Gamma, A \vdash B) \Rightarrow(\Gamma \vdash A \dot{\rightarrow} B) \\
& \mathrm{AbS}_{V}^{\Gamma, x, A}:(\Gamma \vdash A) \Rightarrow(x \notin F V(\Gamma)) \Rightarrow(\Gamma \vdash \dot{\forall} x A) \\
& A \dot{\mathrm{p}}_{\mathrm{Y}}^{\Gamma, x, x, A}:(\Gamma \vdash \dot{\forall} x A) \Rightarrow(\Gamma \vdash A[t / x])
\end{aligned}
$$

Moreover, the following is admissible:

$$
\text { weak }_{\Gamma, A}^{\Gamma^{\prime}} \quad:\left(\Gamma \subset \Gamma^{\prime}\right) \Rightarrow(\Gamma \vdash A) \Rightarrow\left(\Gamma^{\prime} \vdash A\right)
$$

We shall also write r_{A}^{Γ} for a proof of $\Gamma \subset(\Gamma, A)$,

Completeness w.r.t Kripke models

The "standard" proof works by building the canonical model \mathcal{K}_{0} defined by taking $\mathcal{W}_{\mathcal{K}_{0}}$ to be the typing contexts ordered by inclusion, $\mathcal{D}_{\mathcal{K}_{0}}$ to be the terms, $\mathcal{F}_{\mathcal{K}_{0}}(f)$ to be the syntactic application of $f, \mathcal{P}_{\mathcal{K}_{0}}(\dot{P})(\Gamma)\left(t_{1}, \ldots, t_{a_{\dot{P}}}\right)$ to be $\Gamma \vdash_{M} \dot{P}\left(t_{1}, \ldots, t_{a_{\dot{P}}}\right)$, and $\perp_{\mathcal{F}_{0}}(\Gamma)$ to be $\Gamma \vdash_{M} \dot{\text { i }}$. The main lemma proves $\Gamma \vdash_{M} A \Longleftrightarrow \Gamma \Vdash_{\mathcal{K}_{0}} A$ by induction on A, with $r_{A}^{\Gamma}: \Gamma \subset \Gamma, A$:

$$
\begin{aligned}
& \uparrow_{A}^{\Gamma} \quad \Gamma \vdash_{M} A \longrightarrow \Gamma \Vdash_{\mathcal{K}_{0}} A \\
& \uparrow_{\dot{P}(\vec{t})}^{\Gamma} \quad p \triangleq p \\
& \uparrow_{A \rightarrow G}^{\Gamma} \quad p \quad \triangleq \Gamma^{\prime} \mapsto h \mapsto m \mapsto \uparrow_{G}^{\Gamma^{\prime}} \dot{\operatorname{App}} \dot{p}_{\Rightarrow}^{\Gamma^{\prime}, A, G}\left(\operatorname{weak}_{\Gamma, A}^{\Gamma^{\prime}}(h, p), \downarrow_{A}^{\Gamma^{\prime}} m\right) \\
& \uparrow_{\dot{\forall} x A}^{\Gamma} \quad p \quad \triangleq t \mapsto \uparrow_{A[t / x]}^{\Gamma} \dot{A p p}_{\forall}^{\Gamma, x, A}(p, t) \\
& \begin{array}{lcl}
\downarrow_{A}^{\Gamma} & \Gamma \Vdash_{\mathcal{K}_{0}} A \longrightarrow & \Gamma \vdash_{M} A \\
\downarrow_{\dot{P}(\vec{t})} & m & \triangleq m
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow_{\dot{\forall} x A}^{\Gamma} \quad m \triangleq \operatorname{Abs}_{\forall}^{\Gamma}, x, A\left(\dot{y}, \downarrow_{A[z / x]}^{\Gamma}(m \dot{y})\right) \quad \dot{y} \text { fresh in } \Gamma
\end{aligned}
$$

And finally:

$$
\mathrm{compl} \triangleq v \mapsto \downarrow_{A}^{\epsilon}\left(v \mathcal{K}_{0} \emptyset \epsilon\right):\left(\forall \mathcal{K} \forall \sigma \forall w \in \mathcal{W}_{\mathcal{K}} w \Vdash_{\mathcal{K}}^{\sigma} A\right) \Rightarrow \vdash_{M} A
$$

Completeness w.r.t. Kripke models in direct-style

Kripke forcing translation for second-order arithmetic

We consider a second-order arithmetic meta-language, multi-sorted over first-order datatypes such as \mathbb{N}, lists, formulas, etc., and with primitive recursive atoms written $P\left(t_{1}, \ldots, t_{a_{P}}\right)$ (morally: HA^{2}).

$$
A, B \triangleq X\left(t_{1}, \ldots, t_{a_{X}}\right)\left|P\left(t_{1}, \ldots, t_{a_{P}}\right)\right| A \wedge B|A \Rightarrow B| \forall x A \mid \forall X A
$$

Let \geq be a preorder definable over some sort W in HA^{2}. We consider a (syntactic) Kripke forcing translation from HA^{2} to HA^{2} :

$$
\begin{array}{ll}
w \Vdash_{\geq} X\left(t_{1}, \ldots, t_{a_{X}}\right) & \triangleq X\left(w, t_{1}, \ldots, t_{a_{X}}\right) \\
w \Vdash_{\geq} P\left(t_{1}, \ldots, t_{a_{P}}\right) & \triangleq P\left(t_{1}, \ldots, t_{a_{P}}\right) \\
w \Vdash_{\geq} A \wedge B & \triangleq\left(w \Vdash_{\geq} A\right) \wedge\left(w \Vdash_{\geq} B\right) \\
w \Vdash_{\geq} A \Rightarrow B & \triangleq \forall w^{\prime} \geq w\left[\left(w^{\prime} \Vdash_{\geq} A\right) \Rightarrow\left(w^{\prime} \Vdash_{\geq} B\right)\right] \\
w \Vdash_{\geq} \forall x A & \triangleq \forall x\left(w \Vdash_{\geq} A\right) \\
w \Vdash_{\geq} \forall X A & \triangleq \forall X\left(\operatorname{mon}(X) \Rightarrow w \Vdash_{\geq} A\right)
\end{array}
$$

where $\operatorname{mon}(X) \triangleq \forall w \forall w^{\prime} \geq w\left(X\left(w, t_{1}, \ldots, t_{a_{X}}\right) \Rightarrow X\left(w^{\prime}, t_{1}, \ldots, t_{a_{X}}\right)\right)$

Kripke translation of Tarskian semantics is Kripke semantics

We have the following key observation:

$$
w \Vdash \geq\left[\forall\left(\mathcal{D}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}}, \mathcal{P}_{\mathcal{M}}, \perp_{\mathcal{M}}\right) \forall \sigma\left(\llbracket A \rrbracket_{\left(\mathcal{D}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}}, \mathcal{P}_{\mathcal{M}}, \perp_{\mathcal{M}}\right)}^{\sigma}\right)\right]
$$

is the same as

$$
\forall\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right) \forall \sigma w \Vdash_{\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \geq, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right)} A
$$

Otherwise said: for a given ordered set of worlds, the syntactic Kripke translation of validity w.r.t. Tarskian models is validity w.r.t. Kripke models over the same ordered set of worlds!

Kripke translation of the statement of completeness

The Kripke translation of the statement of completeness w.r.t. Tarskian models:

$$
w \Vdash_{\geq}\left[\left(\forall\left(\mathcal{D}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}}, \mathcal{P}_{\mathcal{M}}, \perp_{\mathcal{M}}\right) \forall \sigma\left(\llbracket F \rrbracket_{\left(\mathfrak{D}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}}, \mathcal{P}_{\mathcal{M}}, \perp_{\mathcal{M}}\right)}^{\sigma}\right)\right) \Rightarrow \vdash F\right]
$$

is then

$$
\forall w^{\prime} \geq w\left[\left(\forall\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right) \forall \sigma w^{\prime} \Vdash_{\left(\mathcal{D}_{\mathcal{K}}, \mathscr{F}_{\mathcal{K}}, \geq, \mathcal{P}_{\mathcal{K}}\right)}^{\sigma} F\right) \Rightarrow w^{\prime} \Vdash_{\left(\mathfrak{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \geq, \mathcal{P}_{\mathcal{K}}, \perp \mathcal{L}\right)}^{\sigma}(\vdash F)\right]
$$

i.e.

$$
\forall w^{\prime} \geq w\left[\left(\forall\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right) \forall \sigma w^{\prime} \Vdash_{\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \geq, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right.}^{\sigma} F\right) \Rightarrow+F\right]
$$

since $\vdash F$ is a Σ_{1}^{0} formula with no second-order free variables.
Now, if we take contexts ordered by inclusion \subset for worlds and concentrate on the empty context, we get:

$$
\left(\forall\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right) \forall \sigma \epsilon \Vdash_{\left(\mathcal{D}_{\mathcal{K}}, \mathcal{F}_{\mathcal{K}}, c, \mathcal{P}_{\mathcal{K}}, \perp_{\mathcal{K}}\right)}^{\sigma} F\right) \Rightarrow \vdash F
$$

which happens to be exactly completeness w.r.t. to Kripke models over contexts ordered by conclusion and considered on the empty context, i.e. a statement of which we had a simple proof.

It just remains to interpret this latter proof in direct style to get a new proof with side effets of completeness w.r.t. Tarskian models.

Excerpt of our meta-language with effects

$$
\frac{\Gamma \vdash p: A(y) \quad y \text { fresh in } \Gamma}{\Gamma \vdash \lambda y \cdot p: \forall y A(y)} \forall_{I}
$$

$\Gamma \vdash p: \forall x A(x) \quad t$ updatable-variable-free or t an updatable variable and $A(x)$ of type 1

$$
\Gamma \vdash p t: A(t)
$$

$$
\frac{\Gamma \vdash p: A(X) \quad X \text { fresh in } \Gamma}{\Gamma \vdash p: \forall X A(X)} \forall_{I}^{2} \quad \frac{\Gamma \vdash p: \forall X A(X) \quad \Gamma \vdash q: \text { mon }_{\Gamma} B(\vec{y})}{\Gamma \vdash p: A(X)[B(\vec{y}) / X(\vec{y})]} \forall_{E}^{2}
$$

$$
\frac{\Gamma,[b: x \geq t] \vdash q: T(x) \quad \Gamma \vdash r: \text { refl } \geq \quad \Gamma \vdash s: \operatorname{trans} \geq \quad x \text { fresh in } \Gamma \text { and } T(t)}{\Gamma \vdash \operatorname{set} x:=t \operatorname{as} b /_{(r, s)} \text { in } q: T(t)} \text { seteff }
$$

$$
\frac{\Gamma,\left[b: x \geq t\left(x^{\prime}\right)\right] \vdash q: T(x) \quad \Gamma \vdash r: t\left(x^{\prime}\right) \geq x^{\prime} \quad[x \geq u] \in \Gamma \text { for some } u \quad x^{\prime} \text { fresh in } \Gamma}{\Gamma \vdash \text { update } x:=t(x) \text { of } x^{\prime} \text { as } b \text { by } r \text { in } q: T(t(x))}
$$

where C of type 1 means in the grammar $C::=P\left(t_{1}, \ldots, t_{a_{P}}\right)\left|P\left(t_{1}, \ldots, t_{a_{P}}\right) \Rightarrow C\right| \forall x C$ and mon $_{\Gamma} B$ means B monotonic for all updatable variables in Γ

The completeness proof in direct-style

In direct style, \mathcal{K}_{0} is the model \mathcal{M}_{0} defined by $\mathcal{P}_{\mathcal{M}}(\dot{P})\left(t_{1}, \ldots, t_{a_{\dot{P}}}\right) \triangleq \Gamma \vdash \dot{P}\left(t_{1}, \ldots, t_{a_{\dot{P}}}\right)$ for Γ a given updatable variable

```
\(\uparrow_{F} \quad \Gamma \vdash_{M} F \longrightarrow \llbracket F \mathbb{1}_{\mathcal{M}_{0}}^{\prime}\)
\(\uparrow_{P(\vec{t})} \quad g \triangleq g\)
\(\uparrow_{F \rightarrow G} \quad g \quad \triangleq \quad m \mapsto \uparrow_{G} \operatorname{App}_{\Rightarrow}^{\Gamma, F, G}\left(g, \downarrow_{F} m\right)\)
\(\uparrow_{\dot{\forall} x F} \quad g \triangleq t \mapsto \uparrow_{F[t / x]} \operatorname{App}_{\forall}^{\Gamma, x, F}(g, t)\)
\(\downarrow_{F} \quad \llbracket F \rrbracket^{\prime} \mathcal{M}_{0} \longrightarrow \Gamma \vdash_{M} F\)
\(\downarrow_{P(\vec{t})} \quad m \triangleq m\)
\(\downarrow_{F \rightarrow G} \quad m \triangleq \operatorname{Abs}_{\underset{F}{\Gamma, F, G}}^{\Rightarrow}\) (update \(\Gamma:=(\Gamma, F)\) of \(\Gamma_{1}\) as \(b_{F}\) by \(r_{F}^{\Gamma}\) in \(\left.\downarrow_{G}\left(m\left(\uparrow_{F} \dot{A x}^{\Gamma_{1}, F, \Gamma}\left(b_{F}\right)\right)\right)\right)\)
\(\downarrow_{\dot{x}_{x F}} \quad m \triangleq \operatorname{Abs}_{Y}^{\Gamma, x, F}\left(\dot{y}, \downarrow_{F[z / x]}(m \dot{y})\right)\)
compl \(\triangleq v \mapsto \operatorname{set} \Gamma:=\epsilon \operatorname{as} b /_{(r, s)}\) in \(\downarrow_{F}\left(v \mathcal{M}_{0} \emptyset\right)\)
```

Obviously, the resulting proof in the object language is a reification of the proof of validity as in Normalisation-by-Evaluation / semantic normalisation [C. Coquand 93, Danvy 96, Altenkirch-Hofmann 96, Okada 99, ...]

