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Introduction
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The completeness of classical first-order logic w.r.t. Tarskian models
First proof by Gödel [1929]

- reasoning on the prenex form + induction on the number of alternation of quantifiers +
reasoning by contradiction

Standard proof by Henkin [1949]

- reasoning by contradiction + construction of a counter-model by enumeration of the for-
mulas over a language extended with Henkin constants coming from the skolemisation of
the drinkers’ paradox (9x( P(x)) 8y P(y))).

Tableaux-based proofs by Beth [1955], Hintikka [1955], Schütte [1956], Kanger [1957]

- building a tableau + reasoning by contradiction to show it has no infinite branch

Excerpt of alternative proofs

- proofs by Mostowski [1948], Rasiowa-Sikorski [1950], relying on the ultrafilter theorem

- a generic abstract proof by Joyal [1978] (with Tarskian completeness for coherent logic
behind the scene?)
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Different formulations of completeness

One of the following three classically equivalent statements

S 1. Formula A true in all models of theory T implies A provable from (a finite subset) of T

S 2. Theory T consistent implies T has a model (model-theoretic view)

S 3. Theory T either is inconsistent or has a model (proof search view)
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Constructivisability of the different formulations of completeness

It happens that S 2 is constructive (the model can be “constructed” as a particular predicate
and proved to be a model when the object language has only negative connectives and
the language is countable).

S 3 is strongly classical as the disjunction is not decidable. However, this does not exclude
computing with, since classical logic is computational: one could compute with it when
completeness is used as a lemma in the proof of a ⌃0

1 formula.

S 1 is the statement for which we are looking for a computational content.
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Logical strength of completeness

- Kreisel [1962], after Gödel [1957]: S 1 for an empty theory and the object language of
negative connectives is equivalent to Markov’s principle over intuitionistic second-order
arithmetic

- Generalised by McCarty [2008]: S 1 for recursively enumerable theories over the language
of negative connectives is equivalent to Markov’s principle over intuitionistic second-order
arithmetic

- McCarty [2008]: using non-decidable theories, S 1 implies classical logic

- Simpson [1999]: strong completeness for a countable language is classically equivalent
to weak König’s lemma over RCA0

- Henkin [1999]: strong completeness for an uncountable theory (hence for uncountable
language) classically implies the Boolean Prime Ideal axiom
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Avoiding the need for Markov’s principle

Krivine’s proof of completeness for an empty theory [1996]

- restricted to minimal classical logic (no ? ) A) so that negation does not have to be
interpreted; Friedman’s A-translation [1978] is then applicable to get rid of Markov’s prin-
ciple

- analysed by Berardi and Valentini [2001]: Krivine adds one extra (degenerated) model,
the always-true model (similar to Friedman’s fallible models and Veldman’s exploding
nodes in intuitionistic logic semantics)

- the modified statement is classically equivalent to the original one but does not need
Markov’s principle

- formalised in the PhoX proof assistant and later in Coq
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The statement of completeness
(empty theory, countable language, restricted to the !̇-?̇-8̇ fragment)

t 2 Term ::= x | f (t1, . . . , tar f )
A, B 2 F ::= P(t1, . . . , tarP) | ?̇ | A!̇B | 8̇x A

A model is a quadruple (MD, FM( f ) 2 Mar f
D �! MD, FM(P) 2 P(MarP

D ),?M 2 P({;})).
Truth inM is defined recursively:

[[x]]�M , �(x)
[[ f (t1, . . . , tar f )]]

�
M , FM( f )([[t1]]�M, . . . , [[tar f ]]

�
M)

[[P(t1, . . . , tar f )]]
�
M , PM(P)([[t1]]�M, . . . , [[tarP]]�M)

[[?̇]]�M , ?M
[[A!̇B]]�M , [[A]]�M ) [[B]]�M
[[8̇x A]]�M , 8t 2MD [[A]]�[x t]

M

A model is classical on �, written Class(M) if for each A, [[¬̇¬̇A]]�M ) [[A]]�M (and in
particular, it is exploding: ?M ) [[A]]�M).

A model satisfies theory T on �, written [[T ]]�M if [[B]]�M for all B 2 T .

The completeness statement : 8T 8A (8M8� (Class(M) ^ [[T ]]�M ) [[A]]�M)) T ` A)
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Remarks on the formulation

We placed ourselves in intuitionistic second-order arithmetic, interpreting predicates by
predicates, defining truth recursively.

Some authors reason instead in the arithmetic of types of rank 2 and define PM(P) as a
Boolean function inMarP

D ) bool. The completeness proof then needs a reification axiom
8P9 f .8x (P(x) () f (x) = true). This can be obtained from the axiom of unique choice
(AC!) and excluded-middle and makes the metatheory actually equivalent to second-order
arithmetic. To avoid having to computationally interpret reification, what should be doable
in dPA! (see LICS 2012), we prefer to directly reason in second-order arithmetic.

It is also common to replace PM by a set of formulas enriched over D such that:

?̇ 2 PM $ ?
A!̇B 2 PM $ A 2 PM ) B 2 PM
8̇x A 2 PM $ 8t A[t/x] 2 PM
A 2 PM $ ¬¬A 2 PM

Our approach has both the advantage of avoiding to consider formulas enriched over D
and to make the connection with intuitionistic models (e.g. Kripke) closer.
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Part I
Analysis of Henkin’s proof
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Henkin’s proof (usual presentation)

To prove T ` A0, prove instead ¬̇A0,T ` ?̇, using the abbreviation ¬̇B , B!̇?̇.

Reason by contradiction (Markov’s principle) and assume (¬̇A0,T ` ?̇) ) ?, i.e. that the
context �0 [ T where �0 , ¬̇A0 is consistent.

For an enumeration �(0) , 8̇x B0, �(2) , 8̇x B2, ... of all universal formulas and �(1) ,
A1!̇B1, �(3) , A3!̇B3, ... of all implicative formulas, classically build:

• �2n+1 , �2n, (B2n[xn/x]!̇8̇x B2n)

• �2n+2 , �2n+1 if �2n+1, A2n+1!̇B2n+1,T ` ?̇
• �2n+2 , �2n+1, A2n+1!̇B2n+1 otherwise

where the formulas B2n[xn/x]!̇8̇x B2n, for xn taken fresh in all �(i) for i < 2n are Henkin
axioms (no need for fresh constants, fresh variables are enough).

This construction propagates consistency from �0 [ T to �n [ T .
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The proof (usual presentation), continued

Build the infinite theory �! , [n(�n [ T ).

Under the initial assumption that T ` A0 is contradictory, one gets that �! is consistent.

Define a syntactic modelM0 by

D , Term
FM( f )(t1, . . . , tar f ) , f (t1, . . . , tar f )
PM(P)(t1, . . . , tarP) , P(t1, . . . , tarP) 2 �!
?M , ?

Using the converse dAe of the Gödel’s numbering of formulas, one proves by induction on
A that [[A]]id

M0
iff A 2 �!.

The model is complete in the sense that ¬̇A < �! implies A 2 �!. Hence it satisfies
Class(M0).

The model satisfies T since T ⇢ �!.

By validity of A0, get [[A0]]idM0
, hence A0 2 �!, hence �! ` ?̇, a contradiction.
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What is the computational meaning of this proof?

Finally, for A0 provable in T , is the model built consistent or not?

Obviously no!

If we turn the proof positively, what it shows is that �! ` ?̇ implies ¬̇A0,T ` ?̇.

That some �(2n+1) has been added to the context reduces to have (�2n, �(2n+1) ` ?̇)) ?
under the assumption that (¬̇A0,T ` ?̇)) ?.

Turned positively, this means that �2n can be extended as soon as we know how to get rid
of the extension.

Otherwise said, the model construction collects continuations.
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The proof (an optimisation)

In practice, we do not need to characterize the elements of �n and �! but only the provability
predicate that �! generates. This means that we only need to know when a given finite
context � is in �n, which can simply be defined by the following (overlapping) clauses:

• � ⇢ �n+1 whenever � ⇢ �n

• �, B2n[xn/x]!̇8̇x B2n ⇢ �2n+1 whenever � ⇢ �2n

• �, A2n+1!̇B2n+1 ⇢ �2n+2 whenever � ⇢ �2n+1 and �2n+1, A2n+1!̇B2n+1 ` ?̇ implies ¬̇A0 ` ?̇.

The condition �2n+1, A2n+1!̇B2n+1 ` ?̇ itself reduces to the existence of � ⇢ �2n+1 such
that �, A2n+1!̇B2n+1 ` ?̇

We can then define A 2 �! to mean 9n9� ⇢ �n (�,T ` A) (“A gets provable at some step
of the construction of a context �n [ T equiconsistent to ¬̇A0 [ T ”).
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The proof (bypassing the need for Markov’s principle)

We take the following definition of the syntactic modelM0 with exploding nodes:

D , Term
FM( f )(t1, . . . , tar f ) , f (t1, . . . , tar f )
PM(P)(t1, . . . , tarP) , P(t1, . . . , tarP) 2 �!
?M , ?̇ 2 �!
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Giving notations to express the computational contents

We reformulate � ⇢ �n as an “inductive predicate” so as to be able to manipulate proof
constructors as data:

¬̇A0 ⇢ �0

I0
� ⇢ �n

� ⇢ �n+1

IS
� ⇢ �2n

�, A(xn) !̇ 8̇x A(x) ⇢ �2n+1

I8

� ⇢ �2n+1 9�0 (�0 ⇢ �2n+1 ^ �0, A!̇B,T ` ?̇)) (¬̇A0,T ` ?̇)

�, A !̇ B ⇢ �2n+2

I)

where �(2n) ⌘ 8̇x A(x) in I8 and �(2n + 1) ⌘ A!̇B in I).
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The object language

We assume given a (non-minimal) set of appropriate object language constructions, parametrized
by a recursively enumerable theory T :

ȧx

+ : A 2 T �! [�,T ` A]

ȧxi : [�, A,�0,T ` A] (for �0 of length i)

ȧx

0
i : [�, A,�0,T ` A] (for � of length i)

ḋn : [�,T ` ¬̇¬̇A] �! [�,T ` A]

˙
abs : [�, A,T ` B] �! [�,T ` A!̇B]

˙
app

_! : [�,T ` A!̇B] �! [�0,T ` A] �! [� [ �0,T ` B]

˙
drinkern : [B2n[xn/x]!̇8̇x B2n,�,T ` ?̇] �! [�,T ` ?̇] where �(2n) = 8̇xB2n and xn as
before

˙
app

_8 : [�,T ` 8̇x A(x)] �! 8t 2 Term [�,T ` A(t)]

⇡!̇1 : [�, A!̇B,T ` ?̇] �! [�,T ` A]

⇡!̇2 : [�, A!̇B,T ` ?̇] �! [�,T ` ¬̇B]
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The core of the proof: [[A]]id
M0

iff A 2 �!

#A : [[A]]id
M0

! A 2 �!
#P(~t) m , m
#?̇ m , m
#A!̇B m , (n, (¬̇A0, A!̇B),

In(injn, (�, f , p) 7! dest #B (m("A (n,�, f , ⇡!̇1 p))) as (n0,�0, f 0, p0)
in flush

�[�0
max(n,n0)(join

��0
nn0 ( f , f 0), ˙

app

_!(⇡!̇2 p, p0))
),

ȧx1) where n = dA!̇Be
#8̇x A m , dest #A[xn/x] (m xn) as (n0,�0, f 0, p0)

in (max(n, n0),�0, join(¬̇A0)�0
nn0 (injn, f 0), ˙

app

_!(ȧx00, p
0))

where n = d8̇x Ae

"A : A 2 �! ! [[A]]id
M0

"P(~t) (n,�, f , p) , (n,�, f , p)
"?̇ (n,�, f , p) , (n,�, f , p)

"A!̇B (n,�, f , p) , m 7! dest #A m as (n0,�0, f 0, p0)
in "B (max(n, n0),� [ �0, join��0nn0 ( f , f 0), ˙

app

_!(p, p0))
"8̇x A (n,�, f , p) , t 7! "A[t/x] (n,�, f , ˙

app

_8(p, t))
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Auxiliary lemma: propagating an inconsistency at level n to level 0

flush

�
n : � ⇢ �n ^ [�,T ` ?̇] �! ¬̇A0,T ` ?̇

flush

�
0 (I

0

, p) , p
flush

�
n+1 (I

S

f , p) , flush

�
n( f , p)

flush

�,A
2n+1 (I8 f , p) , flush2n( f , ˙

drinkerxn p)
flush

�,A
2n+2 (I)( f , k), p) , k ( f , p)



Auxiliary lemma: joining contexts in binary rules

join

�1�2
n1n2 : �1 ⇢ �n1 ^ �2 ⇢ �n2 �! �1 [ �2 ⇢ �max(n1,n2)

join

¬̇A0¬̇A0
00 I

0

I

0

, I

0

join

(�1A)(�2A)
(2n+2)(2n+2) I

_!( f1, k1) I

_!( f2, k2) , I

_!(join�1�2
(2n+1)(2n+1) f1 f2, k1)

join

(�1A)�2
(2n+2)(2n+2) I

_!( f1, k1) I

S

f2 , I

_!(join�1�2
(2n+1)(2n+1) f1 f2, k1)

join

�1(�2A)
(2n+2)(2n+2) I

S

f1 I

_!( f2, k2) , I

_!(join�1�2
(2n+1)(2n+1) f1 f2, k2)

join

�1�2
(n+1)(n+1) I

S

f1 I

S

f2 , I

S

(join�1�2
nn f1 f2)

join

�1�2
(2n+1)(2n+1) I

S

f1 I

_8 f2 , I

_8(join
�1�2
(2n)(2n) f1 f2)

join

�1�2
(2n+1)(2n+1) I

_8 f1 I

S

f2 , I

_8(join
�1�2
(2n)(2n) f1 f2)

join

�1�2
(2n+1)(2n+1) I

_8 f1 I

_8 f2 , I

_8(join
�1�2
(2n)(2n) f1 f2)

join

�1�2
n1n2 I

S

f1 f2 , I

S

(join�1�2
n01n2

f1 f2) if n1 = n01 + 1 > n2

join

(�1A1)�2
n1n2 I

_!( f1, k1) f2 , I

n

0
1

(join�1�2
n01n2

f1 f2, k1) if n1 = n01 + 1 > n2

join

�1�2
n1n2 f1 I

S

f2 , I

S

(join�1�2
n1n02

f1 f2) if n1 < n02 + 1 = n2

join

�1(�2A2)
n1n2 f1 I

n

0
2

( f2, k2) , I

n

0
2

(join�1�2
n1n02

f1 f2, k2) if n1 < n02 + 1 = n2
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Auxiliary lemma: ¬̇A0 is in all contexts

injn : (¬̇A0) ⇢ �n

inj0 , I
0

injn+1 , IS(injn)
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Final completeness result for an empty theory

class0 : 8A [[¬̇¬̇A]]idM0
�! [[A]]idM0

class0 A m , "A (dest #¬̇¬̇A m as (n,�, f , p) in (n,�, f , ḋnp))

theory0 : 8B B 2 T �! [[B]]idM0

theory0 B v , "B (0, ¬̇A0, I0, ȧx
+(v))

compl

A

0

: (8M8�Class(M) ^ [[T ]]�M ) [[A0]]�M) �! ` A0

compl

A

0

 , ḋn( ˙
abs(

let  0 :=  M0 id class0 theory0 in

dest #A0  0 as (n,�, f , p)
in flush

�
n( f , ˙
app

_!(ȧx|�|�1, p))
))
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Remarks about the computational content

If A0 is provable, then the countermodel (virtually) built is actually the degenerated coun-
termodel that contains all formulas, including ?̇.

Along the computational interpretation of Markov’s principle, reasoning classically by as-
suming [` A0] ) ? is the same as providing an exception which returns a derivation of
[` A0] as soon as a contradiction is obtained. Along Friedman’s A-translation, this amounts
to reinterpret ? as the formula [` A0].

Computationally, the proof of a negation can be seen as a continuation. Combined with
the computational interpretation of Markov’s principle, this is the same as a continuation
that eventually returns a derivation of [` A0].

In particular, a proof that some finite section ¬̇A0,� of the countermodel is consistent is the
same as a continuation that transforms a derivation of [¬̇A0,�,T ` ?̇], that is of [�,T ` A0],
into a derivation of [` A0].
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More remarks about the computational content

The ordering of formulas has an effect on the order of application of continuations: contin-
uations are applied in the decreasing order of the Gödel number of the formulas.

In case of branching, i.e. in the case of modus ponens, if two continuations are available
at level n, the join function arbitrary chooses one of them. In particular, some subproofs
of the initial meta-proof might be lost and replaced by an other proof of the same formula
in the same original meta-proof.

Compared to the completeness proof with respect to Kripke semantics where the world
is locally extended with the knowledge of A to show that A!̇B is provable, here, in the
completeness for two-valued semantics, one extends the (counter)knowledge � with A!̇B
but altogether with a proof that contradicting �, A!̇B (in the sense of a derivation of
�, A!̇B,T ` ?̇) eventually reduces to a derivation of ` A0.

It is worth noticing that the definition of � ⇢ �n is of high implicational complexity. Due to
the contravariance in the clause In, the definition of � ⇢ �n+1 involves implications nested
at level n. Henceforth, the definition of A 2 �! is a formula whose implication nesting depth
is not finite. Logically, it is however a ⌃0

1 formula.
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Remarks about the Henkin axioms

Cutting Henkin axiom A[xn/x]!̇8̇xA with drinkers’ paradox 9y(A[y/x]!̇8̇xA) can be seen
as a way to delegate the insurance of the (moral) freshness of xn and the ability to go
from A[xn/x] to 8̇xA even when in a context where other occurrences of xn might oc-
cur (namely the context �0 ⇢ �n0 in the 8̇ clause of #). Interestingly, eliminating a cut
with 9y(A[y/x]!̇8̇xA) will rename the xn whose occurrences are possibly non-fresh using
names that are actually fresh and from which 8̇xA can correctly be inferred.
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�4

⇢9

D

C E

A

⇢2 ⇢9

G

D

C

?

�7

⇡

�4

⇢2 or �2

�7

⇡

C ! D,¬D ^CG ! H,¬H ^GA! B,¬B ^ A

�2

Intuition about the computation content

E ! FC ! D

C ! DG ! HA! B
B

F
?,¬B ^ A,¬H ^G,¬D ^C

C ! D,¬D ^C E ! F,¬F ^ E
?,¬B ^ A,¬D ^C
¬H H,¬B ^ A,¬D ^C

B,¬D ^C,¬F ^ E¬B
?,¬D ^C,¬F ^ E

¬H G,¬B ^ A,¬D ^C

¬B A,¬D ^C

¬F

¬F E,¬D ^C

F,¬D ^C

?,¬D ^C

D

resulting object language classical prof (not cut-free!)

¬D C

¬D
?

dA! Be = 4
dC ! De = 2

dE ! Fe = 9
dG ! He = 7

�-normal ⌘-expanded meta-proof

H
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Part II
A proof with side effects of completeness with respect to

Tarski semantics
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Completeness w.r.t. Kripke models
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Kripke models

A Kripke model K is an increasing family of Tarskian models indexed over a set of worlds
WK ordered by �K . In the absence of _ and 9, it is enough to take DK constant.

Truth relatively to K at world w is defined by:

[[x]]�K , �(x)
[[ f t1 . . . ta f ]]

�
K , FK( f )([[t1]]�K , . . . , [[ta f ]]

�
K)

w ��K Ṗ(t1 . . . taṖ
) , PK(Ṗ)(w)([[t1]]�K , . . . , [[taṖ

]]�K)
w ��K ?̇ , ?K(w)
w ��K A!̇B , 8w0 �K w (w0 ��K A) w0 ��K B)
w ��K 8x A , 8t 2 KD w ��[x t]

K A

The statement of completeness w.r.t. Kripke models for an empty theory is:

(8K 8�8w 2WK w ��K A))`M A
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Taking a natural deduction as object language

We take the following inference rules:

Ȧx

�,A,�0 : (�, A ⇢ �0)) (�0 ` A)
˙
App

�,A,B
) : (� ` A!̇B)) (� ` A)) (� ` B)

˙
Abs

�,A,B
) : (�, A ` B)) (� ` A!̇B)

˙
Abs

�,x,A
8 : (� ` A)) (x < FV(�))) (� ` 8̇x A)

˙
App

�,x,t,A
8 : (� ` 8̇x A)) (� ` A[t/x])

Moreover, the following is admissible:

˙
weak

�0
�,A : (� ⇢ �0)) (� ` A)) (�0 ` A)

We shall also write r�A for a proof of � ⇢ (�, A),
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Completeness w.r.t Kripke models
The “standard” proof works by building the canonical model K0 defined by takingWK0 to
be the typing contexts ordered by inclusion,DK0 to be the terms, FK0( f ) to be the syntactic
application of f , PK0(Ṗ)(�)(t1, ..., taṖ

) to be � `M Ṗ(t1, ..., taṖ
), and ?K0(�) to be � `M ?̇.

The main lemma proves � `M A () � �K0
A by induction on A, with r�A : � ⇢ �, A:

"�A � `M A �! � �K0
A

"�
Ṗ(~t)

p , p

"�A!̇G p , �0 7! h 7! m 7! "�0G
˙
App

�0,A,G
) ( ˙

weak

�0
�,A(h, p), #�0A m)

"�8̇x A
p , t 7! "�A[t/x]

˙
App

�,x,A
8 (p, t)

#�A � �K0
A �! � `M A

#�
Ṗ(~t)

m , m

#�A!̇B m , ˙
Abs

�,A,B
) (#�,AB (m (�, A) r�A ("�,AA Ȧx

�,A,(�,A)(refl�,A))))
#�8̇x A

m , ˙
Abs

�,x,A
8 (ẏ, #�A[z/x] (m ẏ)) ẏ fresh in �

And finally:

compl , v 7! #✏A (vK0 ; ✏) : (8K 8�8w 2WK w ��K A))`M A
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Completeness w.r.t. Kripke models in direct-style
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Kripke forcing translation for second-order arithmetic

We consider a second-order arithmetic meta-language, multi-sorted over first-order datatypes
such as N, lists, formulas, etc., and with primitive recursive atoms written P(t1, ..., taP)
(morally: HA2).

A, B , X(t1, ..., taX) | P(t1, ..., taP) | A ^ B | A) B | 8x A | 8X A

Let � be a preorder definable over some sort W in HA2. We consider a (syntactic) Kripke
forcing translation from HA2 to HA2:

w �� X(t1, ..., taX) , X(w, t1, ..., taX)
w �� P(t1, ..., taP) , P(t1, ..., taP)
w �� A ^ B , (w �� A) ^ (w �� B)
w �� A) B , 8w0 � w [(w0 �� A)) (w0 �� B)]
w �� 8x A , 8x (w �� A)
w �� 8X A , 8X (mon(X)) w �� A)

where mon(X) , 8w8w0 � w (X(w, t1, ..., taX)) X(w0, t1, ..., taX))
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Kripke translation of Tarskian semantics is Kripke semantics

We have the following key observation:

w �� [8(DM,FM,PM,?M)8� ([[A]]�(DM,FM,PM,?M))]

is the same as

8(DK ,FK ,PK ,?K)8�w ��(DK ,FK ,�,PK ,?K ) A

Otherwise said: for a given ordered set of worlds, the syntactic Kripke translation of validity
w.r.t. Tarskian models is validity w.r.t. Kripke models over the same ordered set of worlds!
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Kripke translation of the statement of completeness

The Kripke translation of the statement of completeness w.r.t. Tarskian models:

w �� [(8(DM,FM,PM,?M)8� ([[F]]�(DM,FM,PM,?M)))) ` F]

is then

8w0 � w [(8(DK ,FK ,PK ,?K)8�w0 ��(DK ,FK ,�,PK ) F)) w0 ��(DK ,FK ,�,PK ,?K ) (` F)]

i.e.
8w0 � w [(8(DK ,FK ,PK ,?K)8�w0 ��(DK ,FK ,�,PK ,?K ) F)) ` F]

since ` F is a ⌃0
1 formula with no second-order free variables.

Now, if we take contexts ordered by inclusion ⇢ for worlds and concentrate on the empty
context, we get:

(8(DK ,FK ,PK ,?K)8� ✏ ��(DK ,FK ,⇢,PK ,?K ) F)) ` F

which happens to be exactly completeness w.r.t. to Kripke models over contexts ordered
by conclusion and considered on the empty context, i.e. a statement of which we had a
simple proof.

It just remains to interpret this latter proof in direct style to get a new proof with side effets
of completeness w.r.t. Tarskian models.
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Excerpt of our meta-language with effects

� ` p : A(y) y fresh in �

� ` �y.p : 8y A(y)
8I

� ` p : 8x A(x) t updatable-variable-free or t an updatable variable and A(x) of type 1

� ` p t : A(t)
8E

� ` p : A(X) X fresh in �

� ` p : 8X A(X)
82

I
� ` p : 8X A(X) � ` q : mon� B(~y)

� ` p : A(X)[B(~y)/X(~y)]
82

E

�, [b : x � t] ` q : T (x) � ` r : refl � � ` s : trans � x fresh in � and T (t)

� ` set x := t as b/(r,s) in q : T (t)
seteff

�, [b : x � t(x0)] ` q : T (x) � ` r : t(x0) � x0 [x � u] 2 � for some u x0 fresh in �

� ` update x := t(x) of x0 as b by r in q : T (t(x))
update

where C of type 1 means in the grammar C ::= P(t1, ..., taP) | P(t1, ..., taP) ) C | 8x C and
mon� B means B monotonic for all updatable variables in �
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The completeness proof in direct-style

In direct style, K0 is the model M0 defined by PM(Ṗ)(t1, ..., taṖ
) , � ` Ṗ(t1, ..., taṖ

) for � a
given updatable variable

"F � `M F �! [[F]]0M0

"P(~t) g , g
"F!̇G g , m 7! "G ˙

App

�,F,G
) (g, #F m)

"8̇x F g , t 7! "F[t/x] ˙
App

�,x,F
8 (g, t)

#F [[F]]0M0
�! � `M F

#P(~t) m , m
#F!̇G m , ˙

Abs

�,F,G
) (update� := (�, F) of�1 as bF by r�F in #G (m ("F Ȧx

�1,F,�(bF))))
#8̇x F m , ˙

Abs

�,x,F
8 (ẏ, #F[z/x] (m ẏ))

compl , v 7! set� := ✏ as b/(r,s) in #F (vM0 ;)

Obviously, the resulting proof in the object language is a reification of the proof of validity
as in Normalisation-by-Evaluation / semantic normalisation [C. Coquand 93, Danvy 96,
Altenkirch-Hofmann 96, Okada 99, ...]
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