An Intuitionistic Logic that Proves Markov's principle (an analysis of the computational content of Markov's principle)

Hugo Herbelin

11 July 2010

LICS

Edinburgh

Markov's principle in arithmetic

$$\neg \neg \exists x \, A(x) \to \exists x \, A(x) \qquad \text{for } A(x) \text{ decidable}$$

- classically trivial
- entails that classical logic is conservative over intuitionistic logic for $\exists x A(x)$ statements (A(x) decidable)
- useful for program extraction in constructive analysis (implies $\neg x = y \rightarrow x \# y$ on real numbers)
- not provable in (standard) intuitionistic logic (no simply-typed realiser, Kreisel [1958])
- preserves the disjunction and existence properties (Smorynski [1973])
- admissible as a rule (Friedman's A-translation [1978], see also Dragalin, generalised by Coquand-Hofmann [1999])
- standard for Russian intuitionism but not considered to be intuitionistic in Brouwer and Bishop

Computing with Markov's principle

Kleene's realisability

 \hookrightarrow conventional realiser is unbounded search, testing A(0), A(1), ... until finding some $A(n_0)$ that holds

Gödel's functional interpretation (Dialectica)

 \hookrightarrow realisable by identity

Curry-Howard proof-as-program correspondence

\hookrightarrow this work: Markov's principle = exception mechanism

More precisely: Markov's principle = statically-bound (as with callcc) or dynamically-bound (as with try/with) exception mechanism with exceptions on *datatypes* only

We focus hereafter on a catch/throw mechanism for statically-bound exceptions

Preliminary analysis of Friedman's A-translation

Friedman's A-translation: B_A is B in which any atom X (including \perp) is replaced by $X \vee A$

 $\begin{array}{ccc} \vdash_{I} B \\ \downarrow & \text{making exceptional calls to "ex falso quodlibet" explicit} \\ \vdash_{M} B_{A} \\ \downarrow & \text{moving exceptions up to the surface (*)} \\ \vdash_{M} B \lor A \\ \downarrow & \text{taking } B \text{ for } A \text{ at toplevel} \\ \vdash_{M} B \lor B \\ \downarrow & \text{catching the possibility of an exception} \\ \vdash_{M} B \end{array}$

Warning! step (*) only applies when B is intuitionistically equivalent to an \rightarrow - \forall -free formula

 $\begin{array}{ll} (B_1 \lor A) \diamond (B_2 \lor A) & \text{iff} & (B_1 \diamond B_2) \lor A & \text{holds for} \lor \text{and} \land \text{but not} \rightarrow \\ \diamond_x (B(x) \lor A) & & \text{iff} & (\diamond_x B(x)) \lor A & \text{holds for} \exists \text{ but not for} \forall \end{array}$

(observed, at least, by U. Berger [2004])

This suggests a formulation of Markov's principle dedicated to predicate logic...

Markov's principle in predicate logic

We call Markov's principle for (intuitionistic) predicate logic the principle:

 $\neg \neg T \rightarrow T$ for T strictly positive (i.e. $\rightarrow \neg \forall$ -free)

Example: $\exists x X(x) \lor \exists y Y(y)$ is strictly positive but $\exists x (X(x) \to Y(x))$ is not.

Remark: from the point of view of linear/differential logic, this boils down to $T \to T$ for T strictly positive (an instance of *codereliction*)

... or more generally to $T \to |T|$ where T is strictly positive up to the presence of ''?'' and |T| erases the ''?''

Main results

Intuitionistic logic + classical reasoning limited to strictly positive formulae

- provides with a proof-as-program interpretation of Markov's principle based on exceptions
- using statically-bound exceptions, the proof is

 $\lambda H. \operatorname{catch}_k. \operatorname{efq} \left(H \left(\lambda x. \operatorname{throw} k x \right) \right)$

where $H: \neg \neg T$ and $k: \neg T$

- internally satisfies the characteristic disjunction and existence properties of intuitionistic logic

```
a proof of \vdash A \lor B comes from a proof either of \vdash A or of \vdash B
a proof of \vdash \exists x A(x) comes from a proof of \vdash A(t) for some t
```

Call-by-name exceptions implement Coquand-Hofmann's generalisation of Friedman's A-translation in *direct style*.

Extended Intuitionistic Predicate Logic: IQC_{MP}

 IQC_{MP} characterises intuitionistic predicate logic + Markov's principle

 $\Gamma \vdash A \text{ in } IQC_{MP} \quad \text{iff} \quad MP, \Gamma \vdash A \text{ in } IQC.$

Normalisation rules for $IQC_{MP}:$ at least four possible semantics

call-by-value	or	call-by-name

statically-bound exceptions
(based on catch/throw) or dynamically-bound exceptions
(based on try/raise)

The call-by-value normalisation semantics with static exceptions

$$\begin{array}{lll} V & ::= a \mid \iota_i(V) \mid (V,V) \mid (t,V) \mid \lambda a.p \mid \lambda x.p \mid () \\ F[\] & ::= \operatorname{case} [\] \text{ of } [a_1.p_1 \mid a_2.p_2] \mid \pi_i([\]) \mid \operatorname{dest} [\] \text{ as } (x,a) \text{ in } p \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

 $\forall \rightarrow$ -free formulae are datatypes... call-by-value ensures that any closed proof of such a formula reduces to value and that any "throw" initially present in the proof has been raised

Note: No rule to capture the context, i.e. catch is used as a degenerated control operator

Properties of the reduction system

The resulting reduction system is rich enough to ensure the normalisation of closed proofs **Subject reduction** If $\Gamma \vdash p : A; \Delta$ and $p \rightarrow q$ then $\Gamma \vdash q : A; \Delta$

Progress If $\vdash p : A; \Delta$ and p is not a (closed) value then p is reducible

Normalisation If $\vdash p : A; \Delta$ then p is normalisable (by either monadic-style interpretation or, for static exceptions, embedding in classical logic)

Internal existence property $\vdash p : \exists x A(x) \text{ implies } \vdash q : A(t) \text{ with } p \xrightarrow{*} (t,q)$

Internal disjunction property $\vdash p : A_1 \lor A_2$ implies $\vdash q : A_1$ with $p \xrightarrow{*} \iota_1(q)$ or $\vdash q : A_2$ with $p \xrightarrow{*} \iota_2(q)$

How it works

The general form of a closed proof of $\neg \neg \exists x B(x)$ is

$$\lambda k.k(t_1,\ldots(k(t_2,\ldots(k(t_n,V))\ldots))\ldots))$$

Applying Markov's principle gives

```
\operatorname{catch}_{\alpha}\operatorname{efq}\operatorname{throw}_{\alpha}\left(t_{1},\ldots\left(\operatorname{throw}_{\alpha}\left(t_{2},\ldots\left(\operatorname{throw}_{\alpha}\left(t_{n},V\right)\right)\ldots\right)\right)\ldots\right)
```

and the evaluation strategy forces the evaluation to

 (t_n, V)

A connection with delimited control

Felleisen's # operators [1988] and Danvy and Filinski's $\langle \rangle$ operator [1989] delimit the extent of the evaluation context captured by control operators.

Delimiters also *block* the interaction between a control operator and its surrounding context.

This is what is implicitly used in IQC_{MP} : the interaction of catch with its context is blocked so to ensure that the "exception" types in Δ remain "datatypes".

In an extended work with Danko Ilik, the full continuation monad is considered and intuitionistic logic with both Markov's principle and double negation shift $(\forall x \neg \neg A(x) \rightarrow \neg \neg \forall x A(x))$ is captured

More generally: not only classical logic but any other kind of side-effects could be supported in logic and the logical role of *delimiters* is to purge the effects, something that is possible as soon as the effects are used to ultimately prove a small \rightarrow - \forall -free formulae.

Summary, ongoing works, remarks

Markov's principle *is* undoubtedly constructive and it has a more clever computational content than just unbounded search.

The intuitive observation that Friedman's A-translation is a form of exception monad transformation becomes concrete.

Not only callcc-style (statically-bound) control but try-style (dynamically-bound) exception handling are adequate to prove Markov's principle (even though they do not have the same computational content).

Extension to arithmetic under study.

Design of a notion of Σ -evasive modified realisability that validates Markov's principle.

Alternative normalisation proof by embedding to intuitionistic logic using Coquand-Hofmann's generalisation of Friedman's A-translation.

Connections exist with the codereliction rule of differential interaction nets.

Purely intuitionistic proofs of completeness of intuitionistic or classical logic made possible without requiring Veldman-Friedman-Krivine "fallible" ("exploding") models.

A possible alternative to Dialectica for extracting programs from proofs in constructive analysis.

Additional contents

Σ -evasive realisability (work in progress)

Based on the monadic transformation, we can adapt realisability so that it captures Markov's principle:

$$\begin{array}{cccc} p \Vdash_{\Delta} A & \text{reads as} & p \ \Sigma\text{-evasively realises} \ A & \text{over } \Delta \\ p \Vdash A & \text{reads as} & p \ \Sigma\text{-evasively realises} \ A \end{array}$$

$$\begin{array}{cccc} p \Vdash_{\Delta} T & \triangleq & p \ \text{is} \ \star \\ p \Vdash_{\Delta} A_1 \wedge A_2 & \triangleq & \pi_1(p_1) \Vdash_{\Delta} A_1 \ \text{and} \ \pi_2(p_2) \Vdash_{\Delta} A_2 \\ p \Vdash_{\Delta} A_1 \lor A_2 & \triangleq & \pi_2(p) \Vdash A_{\pi_1(p)} \\ p \Vdash_{\Delta} A \to B & \triangleq & \text{for all } \Delta' \supset \Delta, \ q \Vdash_{\Delta'} A \ \text{implies either} \ p \ q \Vdash_{\Delta'} B \ \text{or} \ p \ q \Vdash T \ \text{for some} \ T \ \text{in} \ \Delta' \\ p \Vdash_{\Delta} A(\pi_1(p)) \end{array}$$

 $p \Vdash_{\Delta} \forall x A(x) \triangleq$ for all $t \in \mathcal{D}$, either $p t \Vdash_{\Delta} A(t)$ or $p t \Vdash T$ for some T in Δ

(Δ set of strictly positive formulae)

 $p \mid$

 $p \mid$

 $p \mid$

 $p \mid$

Remark: Independence of premises is validated by modified realisability but no longer validated by Σ -evasive realisability

Replacing catch/throw by try/raise

Rules are apparently the same...

$(\lambda a.p) V$	\rightarrow	p[V/a]
$(\lambda x.p)t$	\rightarrow	p[t/x]
case $\iota_i(V)$ of $[a_1.p_1 \mid a_2.p_2]$	\rightarrow	$p_i[V/a_i]$
$\texttt{dest}\;(t,V)\;\texttt{as}\;(x,a)\;\texttt{in}\;p$	\rightarrow	p[t/x][V/a]
$\pi_i(V_1,V_2)$	\rightarrow	V_i
$F[\texttt{raise}_E p]$	\rightarrow	$\texttt{raise}_E p$
$\texttt{try}_E\texttt{raise}_Ep$	\rightarrow	\mathtt{try}_Ep
$\operatorname{\mathtt{try}}_E \operatorname{\mathtt{raise}}_{E'} V$	\rightarrow	$\operatorname{raise}_{E'} V \ (E \neq E')$
${\tt try}_EV$	\rightarrow	V

... except that substitution p[V/a] is no longer capture-free (no $\alpha\text{-conversion}$ on exception names).

Subject reduction, progress, normalisation, disjunction property and existence property still hold.

catch/throw vs try/raise

For the catch/throw mechanism, bindings are *static* (α -conversion is used to avoid capture) For the try/raise mechanism, bindings are *dynamic* (no α -conversion) Example:

Then, letting $J_{\alpha} \triangleq \lambda c.\texttt{throw}_{\alpha}c$ and $J_E \triangleq \lambda c.\texttt{raise}_Ec$:

Friedman's A-translation as a generalised monad transformation for call-by-name static exceptions

(work in progress)

$$\begin{array}{rcl} \top_{\Delta} & \triangleq & T_{\Delta}(\top) \\ \bot_{\Delta} & \triangleq & T_{\Delta}(\bot) \\ P(\vec{t})_{\Delta} & \triangleq & T_{\Delta}(P(\vec{t})) \\ (B \wedge C)_{\Delta} & \triangleq & T_{\Delta}(B_{\Delta}) \wedge T_{\Delta}(C_{\Delta}) \\ (B \vee C)_{\Delta} & \triangleq & T_{\Delta}(B_{\Delta}) \vee T_{\Delta}(C_{\Delta}) \\ (\exists x \ B(x))_{\Delta} & \triangleq & \exists x \ T_{\Delta}(B(x)_{\Delta}) \\ (\forall x \ B(x))_{\Delta} & \triangleq & \forall x \ (T_{\Delta}(B(x)_{\Delta})) \\ (B \rightarrow C)_{\Delta} & \triangleq & \forall \Delta' \supset \Delta. \ T_{\Delta'}(B_{\Delta'}) \rightarrow T_{\Delta'}(C_{\Delta'}) \end{array}$$

for $T_{\Delta}(B) \triangleq B \lor \Delta$

(based on Coquand-Hofmann A-translation [1999])

Theorem $\Gamma \vdash A$ in IQC_{MP} implies $(\Gamma \vdash A)_{\emptyset}$ in IQC_2