The hidden exception handler of Parigot's $\lambda\mu\text{-calculus}$ and its completeness properties

Observationally (Böhm) complete \uparrow Saurin's extension of $\lambda\mu$ -calculus = call-by-name Danvy-Filinski shift-reset "calculus" \downarrow call-by-value version complete for representing syntactic monads (exceptions, references, ...)

${\sf Contents}$

A tour of computational classical logic

- callcc vs try-with
- Operational semantics: the need for tp
- Felleisen $\lambda_{\mathcal{C}}$ -calculus and Parigot $\lambda\mu$ -calculus
- Curry-Howard and classical logic
- Danvy-Filinski shift/reset calculus vs extending $\lambda\mu$ with (pure) try

Böhm completeness

- David-Py incompleteness of $\lambda\mu$ -calculus vs Saurin's observational completeness
- Saurin's calculus = call-by-name $\lambda \mu$ + pure try = call-by-name shift/reset calculus

Part I

Computing with classical logic

(a tour of callcc, \mathcal{A} , \mathcal{C} , try-with/raise, shift/reset, μ , $\widehat{\mu}$, ...)

Computing with callcc and ptry

```
exception Result of int
                                         let product 1 =
let product 1 =
                                           callcc (fun k =>
 try
                                             let rec aux = function
   let rec aux = function
                                             | [] -> 1
    | [] -> 1
                                            | 0 :: 1 -> throw k 0
    | 0 :: 1 -> raise (Result 0)
                                           | n :: l -> n * aux l
                                    \simeq
    | n :: l -> n * aux l
                                             in aux 1)
   in aux l
 with
   Result n \rightarrow n
```

ptry sets a marker and an associated handler in the evaluation stack and raise jumps to the nearest enclosed marker. callcc memorises the evaluation stack and throw restores the memorised evaluation stack

ptry binds raise dynamically

```
exception Result of int
                                        exception Result of int
let product 1 =
                                        let product 1 =
                                          let rec aux = function
 try
                                          | [] -> 1
   let rec aux = function
   | [] -> 1
                                       | 0 :: 1 -> raise (Result 0)
                                  =
   | 0 :: 1 -> raise (Result 0)
                                          | n :: l -> n * aux l
   | n :: l -> n * aux l
                                          in
   in aux l
                                          try
                                            aux l
 with
   Result n \rightarrow n
                                          with
                                            Result n -> n
```

callcc binds its corresponding throw statically

```
let product 1 =
   callcc (fun k =>
        let rec aux = function
        | [] -> 1
        | 0 :: 1 -> throw k 0
        | n :: 1 -> n * aux 1
        in aux 1)
```

```
let product 1 =
   let rec aux = function
   | [] -> 1
   | 0 :: 1 -> throw k 0
   | n :: 1 -> n * aux 1
   in
   callcc (fun k => aux 1)
```

which is syntactically ill-formed!

A primitive form of try-with: ptry

Syntax

 $\begin{array}{lll}t & ::= & V \mid t t \mid \texttt{raise} t \mid \texttt{ptry} t & (\texttt{terms}) \\ V & ::= & x \mid \lambda x.t & (\texttt{values}) \end{array}$

 $F ::= \Box | F[V \Box] | F[\Box t] | F[raise \Box]$ (local evaluation contexts) $E ::= \Box | E[ptry F]$ (global evaluation contexts)

Operational Semantics (aka weak-head reduction)

 $\begin{array}{rcl} E[(\lambda x.t) \; u] & \to & E[t[u/x]] \\ E[\texttt{ptry } F[\texttt{raise } V]] & \to & E[V] \\ E[\texttt{ptry } V] & \to & E[V] \end{array}$

Simulation of ptry/raise from Ocaml's try-with/raise

raise t \triangleq raise (Exc t)ptry t \triangleq try t with Exc $x \rightarrow x$

Simulation of OCaml's try-with/raise from ptry/raise

Typing callcc/throw and ptry/raise (standard presentation)

$\Gamma,k:\texttt{cont}\ A\vdash t:A$	$\Gamma,k:\texttt{cont}\ A\vdash t:A$		
$\overline{\Gamma \vdash \texttt{callcc} (\texttt{fun } k \rightarrow t) : A}$	$\overline{\Gamma,k: \texttt{cont}\; A \vdash \texttt{throw}\; k\; t:B}$		
$\frac{\Gamma \vdash t:\texttt{exn}}{\Gamma \vdash \texttt{ptry} \ t:\texttt{exn}}$	$\frac{\Gamma \vdash t: \mathtt{exn}}{\Gamma \vdash \mathtt{raise} \ t: B}$		

Typing callcc/throw and ptry/raise (generalising the type of exceptions)

$\Gamma,k:\texttt{cont}\ A\vdash t:A$	$\Gamma,k:\texttt{cont}\ A\vdash t:A$
$\overline{\Gamma \vdash \texttt{callcc} (\texttt{fun } k \rightarrow t) : A}$	$\overline{\Gamma,k: \texttt{cont}\; A \vdash \texttt{throw}\; k\; t:B}$
$\Gamma \vdash t : A$	$\Gamma \vdash t : A$
$\overline{\Gamma \vdash \texttt{ptry} \; t : A}$	$\overline{\Gamma \vdash \mathtt{raise} \ t : B}$

Typing callcc/throw and ptry/raise (naming the dynamic ptry continuation)

$\Gamma,k:\texttt{cont}\ A\vdash t:A$	$\Gamma,k:\texttt{cont}\ A\vdash t:A$
$\overline{\Gamma \vdash \texttt{callcc} (\texttt{fun } k \rightarrow t)}$	$\overline{\Gamma, k: \texttt{cont } A \vdash \texttt{throw } k \ t: B}$
$\Gamma, \texttt{tp}:\texttt{cont}\ A \vdash t: A$	$\Gamma, { t tp}: { t cont} \ A dash t: A$
$\Gamma \qquad \qquad \vdash \texttt{ptry}_{tp} \ t$	$\overline{\Gamma, tp : cont \ A \vdash raise_{tp} \ t : B}$

Typing callcc/throw and ptry/raise (naming the dynamic ptry continuation)

$\Gamma,k: \texttt{cont}\; A \vdash t: A$	$\Gamma,k:\texttt{cont}\ A\vdash t:A$
$\overline{\Gamma \vdash \texttt{callcc} (\texttt{fun } k \rightarrow t) : A}$	$\overline{\Gamma,k:\texttt{cont}\;A\vdash\texttt{throw}\;k\;t:B}$
$\Gamma, \texttt{tp}: \texttt{cont}\ A \vdash t: A$	$\Gamma, \texttt{tp}:\texttt{cont}\ A \vdash t: A$
$\overline{\Gamma, \mathtt{tp}: \mathtt{cont} \ T \vdash \mathtt{ptry}_{\mathtt{tp}} \ t: A}$	$\overline{\Gamma, \mathtt{tp} : \mathtt{cont} \ A \vdash \mathtt{raise_{tp}} \ t : B}$

Generalisation of the type of ptry needs type effects on arrows to ensure the type correctness of dynamic binding:

$$\frac{\Gamma, \operatorname{tp}: \operatorname{cont} T \vdash t : A \to_T B \quad \Gamma, \operatorname{tp}: \operatorname{cont} T \vdash u : A}{\Gamma, \operatorname{tp}: \operatorname{cont} T \vdash t u : B} \qquad \frac{\Gamma, x : B, \operatorname{tp}: \operatorname{cont} T \vdash t : C}{\Gamma, \operatorname{tp}: \operatorname{cont} U \vdash \lambda x.t : B \to_T C}$$

 $\overline{\Gamma, x: A, \texttt{tp}:\texttt{cont}\ T \vdash x: A}$

Simple types: callcc is more expressive than ptry (computing with infinity)

```
E.g. proof of \forall f : (nat \rightarrow bool) \exists b : bool \forall m \exists n \ge n \ f(m) = b
let pseudo_decide_infinity f =
callcc (fun k -> (true, fun m1 ->
callcc (fun k1 -> throw k (false (fun m2 ->
callcc (fun k2 ->
let n = max m1 m2 in
if f n then throw k1 n else throw k2 n))))))
```

This is executable in SML, Objective Caml (and Scheme).

Any program whose result is a non-functional value and that uses pseudo_decide_infinity will yield a (correct) result.

Each call to throw will induce backtracking on the progress of the program that uses pseudo_decide_infinity.

Simple types: callcc is more expressive than ptry (drinkers' paradox)

 $\texttt{E.g. proof of } \forall P: (\texttt{human} \rightarrow \texttt{Prop}) \ \exists x:\texttt{human} \ \forall y:\texttt{human}, P \ x \rightarrow P \ y$

```
(* drinkers : human * (human -> 'a -> 'a)
let drinkers =
  callcc (fun k -> (adam, fun y px ->
     callcc (fun k' -> throw k (y, fun y' py -> throw k' py))))
```

Simple types: **ptry** is more expressive than **callcc**

Derivation of a fixpoint using exceptions of functional type:

```
type dom = unit -> unit
(* lam : (dom -> dom) -> dom *)
let lam f = fun () -> raise f
(* app : dom -> dom -> dom *)
let app t u = (ptry (let () = t () in t)) u
(* delta : dom *)
let delta = lam (fun x -> app x x)
(* omega : dom *)
let omega = app delta delta
```

Typing ptry shows that it raises exceptions of type dom \triangleq unit \rightarrow_{dom} unit which is a *recursive* type.

Which possible Curry-Howard interpretation for ptry/raise?

How to interpret type effects in the logical framework? Use a canonical type effect? Use \perp ? Type ptry/raise with the rules

 $\Gamma, \texttt{tp}: \texttt{cont} \perp \vdash t: \bot \qquad \qquad \Gamma, \texttt{tp}: \texttt{cont} \perp \vdash t: \bot$

 $\Gamma, \texttt{tp}: \texttt{cont} \perp \vdash \texttt{ptry}_{\texttt{tp}} \ t: \perp \qquad \Gamma, \texttt{tp}: \overline{\texttt{cont} \perp \vdash \texttt{raise}_{\texttt{tp}} \ t: B}$

The Curry-Howard interpretation for callcc

We have $\lambda x. \mathtt{callcc}(\lambda k. x \, k) : ((A \to B) \to A) \to A$ which corresponds to Peirce law

Minimal logic + Peirce law is called *minimal classical logic*

 $\lambda\text{-calculus}$ + callcc and its reduction semantics corresponds to minimal classical logic

The hidden *toplevel* of callcc operational semantics

```
# let y = callcc (fun k -> fun x -> throw k (fun y -> x+y));;
val y : int -> int = <fun>
# y 3;;
val y : int -> int = <fun> (* !!!! *)
```

The reason is that the continuation of the definition of y is "print the value of y". Let's call it k_0 . The value of y is fun $x \rightarrow throw k_0$ (fun $y \rightarrow x+y$). When y is applied, throw is called and it returns to k_0 .

Conventionally, this semantics is expressed using an abortion operator \mathcal{A} which itself hides a call to the toplevel continuation.

Intermezzo: Felleisen's \mathcal{C} operator

Motivated by the possibility to reason on operators such as callcc in Scheme, Felleisen *et al* introduced the C operator.

Syntax

$$t ::= x \mid \lambda x.t \mid t t \mid \mathcal{C}(\lambda k.t)$$

 ${\mathcal C}$ is equivalent to the combination of callcc and ${\mathcal A}.$

 $\begin{aligned} \mathcal{C}(\lambda k.t) &= \texttt{callcc}(\lambda k.\mathcal{A}\,t) \\ \texttt{callcc}(\lambda k.t) &= \mathcal{C}(\lambda k.k\,t) \\ \mathcal{A}\,t &= \mathcal{C}(\lambda_{-}.t) \end{aligned}$

Remark: in $C(\lambda k.t)$, " λk ." is part of the syntax. Alternative equivalent definitions of the language are

$$t ::= x | \lambda x.t | tt | Ct$$

or
$$t ::= x | \lambda x.t | tt | C$$

Parigot's $\lambda\mu$ -calculus (minimal version)

Use special variables α , β for denoting continuations.

Syntax

t	$::= V \mid t t \mid \mu \alpha.c$	(terms)
С	$::= [\beta]t$	(commands or states)
V	$::= x \mid \lambda x.t$	(values)

Use *structural substitution* for continuations:

 $E[\mu\alpha.c] \to \mu\alpha.c[[\alpha]E/[\alpha]\Box]$

More concisely:

 $E[\mu\alpha.c] \rightarrow \mu\alpha.c[[\alpha]E/\alpha]$

Parigot's $\lambda\mu$ -calculus (expressing callcc)

callcc is approximable:

$$\operatorname{callcc}(\lambda k.(\dots\,k\,t\,\dots))\simeq \mu k.[k](\dots\,[k]t\,\dots)$$

In fact, the actual operational semantics of callcc is:

$$E[\texttt{callcc}(\lambda k.t)] \to t[\lambda x.\mathcal{A}(E[x])/k] \tag{*}$$

The previous approximation of callcc is "too efficient" compared to the actual semantics (such as implemented in Scheme). The correct simulation, in Scheme, is

$$\texttt{callcc} \triangleq \lambda z.\mu \alpha.[\alpha](z \ \lambda x.\mu_.[\alpha]x)$$

which corresponds to an operator of reification of the evaluation context as a function.

Yet, the full semantics of callcc above requires \mathcal{A} and $\lambda\mu$ -calculus is not strong enough to express it. Especially, it is not strong enough to simulate the capture of the toplevel continuation performed by the toplevel rule (*) above.

Parigot's $\lambda\mu$ -calculus (adding a denotation for the toplevel continuation)

Syntax

The operator \mathcal{A} can now be expressed: $\mathcal{A} \triangleq \lambda x.\mu_{-}.[tp]x$ and the toplevel reduction rule of callcc gets simulable:

 $\lambda\mu$ -calculus extended with tp can faithfully simulate callcc or Felleisen's λ_{c} -calculus. Moreover, it

- is able to substitute continuations directly as evaluation contexts

- allows notations for continuation constants

- is able to express states of abstract machine (tp plays the rôle of the bottom of the stack)

- has nice reduction and operational properties (almost as nice as $\overline{\lambda}\mu\tilde{\mu}!$) [Ariola-Herbelin 2007]

An example of "inefficiency" in call-by-value:

Danvy and Filinski's **shift** and **reset** [1989]

The operator **reset** locally "resets" the toplevel and delimits the current continuation of a computation. The operator **shift** captures the current delimited continuation and *composes* it with the continuation at the places it is invoked.

Syntax

t V	::= ::=	$V \mid t t \mid \mathcal{S}(\lambda k.t) \mid \langle t \rangle$ $x \mid \lambda x.t$	(terms) (values)
$F\square$ $E\square$::= ::=	$\Box \mid F[V \Box] \mid F[\Box t]$ $\Box \mid E[\texttt{reset}F\Box]$	(local ev. contexts) (global ev. contexts)

Historically, the semantics of shift/reset was defined by continuation-passing-style translation (CPS). Its operational semantics is now well established.

Operational Semantics

 $E[(\lambda x.t) \ u] \longrightarrow E[t[u/x]]$ $E[\langle F[\mathcal{S}(\lambda k.t)]\rangle] \longrightarrow E[\langle t[\lambda x.\langle F[x]\rangle/k]\rangle]$ $E[\langle V\rangle] \longrightarrow E[V]$

22

Application: normalisation by evaluation with boolean type [Danvy 1996]

```
type term =
| Abs of string * term
| Var of string | App of term * term
| True | False | If of term * term * term
type types =
                                  (* |Atom|
Atom
                                                                   *)
                                             = term
                                  (* |Arrow(T1,T2)| = |T1| -> |T2| *)
Arrow of types * types
                                  (* |Bool|
Bool
                                             = bool
                                                                   *)
(* up : (T:types)term(T)->|T| *)
let rec up tt t = match tt with
Atom
                 -> t
 Arrow (tt1,tt2) \rightarrow fun x \rightarrow up tt2 (App (t,down tt1 x))
                 -> shift (fun k -> If (t,k true,k false)
Bool
(* down : (T:types) |T|->term(T) *)
and down tt mt = match tt with
Atom
                 -> mt
| Arrow (tt1,tt2) -> let s = fresh () in
                     Abs (s,reset (down tt2 (mt (up tt1 (Var s)))))
                -> if mt then True else False
Bool
```

Filinski [1994]: shift/reset can simulate all concrete monads in *direct style* (the example of references)

The monad that simulates a reference of type S

$$\begin{array}{rcl} T(A) &=& S \to A \times S \\ \eta &=& \lambda x.\lambda s.(x,s) &: A \to T(A) \\ ^* &=& \lambda f.\lambda x.\lambda s. \texttt{let} \ (x,s) = x \ s \ \texttt{in} \ (f \ x \ s) &: (A \to T(B)) \to T(A) \to T(B) \end{array}$$

The resulting encoding of read and write

The operators can be safely added to (call-by-value) classical logic preserving subject reduction. In general, if T is atomic, normalisability is preserved. In the case of the state monad, T is functional and nothing prevents (a priori) to derive a fixpoint.

Comparing shift and reset to the other operators

One can observe that reset behaves the same as ptry and that A behaves as raise. The correspondences are as follows:

Conversely, shift can be macro-defined from callcc, A/raise and ptry/reset:

$$\mathcal{S}(\lambda k.t) \triangleq \text{callcc} (\lambda k.\mathcal{A}(t[\lambda x.\langle k \ x \rangle / k]))$$

The shift/reset calculus can hence be seen as the marriage between the ptry/raise calculus and the callcc/throw calculus.

Warning: callcc, as it occurs in programming languages (that do have exceptions) captures the full continuation and not just the delimited one. It is better to use the name \mathcal{K} to denote the variant that captures the current delimited continuation.

$\lambda \mu \widehat{\mu}$ tp-calculus (a fine-grained shift/reset calculus)

The structural substitution, the presence of continuation variables and the distinction between commands and terms make of $\lambda\mu$ -calculus a good candidate for finely analysing the shift/reset calculus.

Syntax

$$\begin{array}{rcl}t & ::= & V \mid t \, t \mid \mu \alpha.c \mid \widehat{\mu} \mathsf{tp.}c \\ c & ::= & [\beta]t \mid [\mathsf{tp}]t \\ V & ::= & x \mid \lambda x.t \end{array}$$

Macro-definability

The fourth combination $\mu\alpha.[\alpha](t[\lambda x.\hat{\mu}tp.[\alpha]x/k])$ has no name (to our knowledge), it is equivalent to $\mathcal{S}(\lambda k.kt)$.

$\lambda\mu\widehat{\mu} \text{tp-calculus} \\ \text{(a fine-grained shift/reset calculus)} \\$

Semantics

(β_v)	$(\lambda x.t) V$	\rightarrow	t[V/x]	
(η_v)	$\lambda x.(V x)$	\rightarrow	t	if x not free in V
<i>.</i>				
(μ_{app})	$(\mu lpha.c) u$	\rightarrow	$\mu \alpha.c[[\alpha](\Box u))/\alpha]$	
(μ'_{app})	$V\left(\mulpha.c ight)$	\rightarrow	$\mu\alpha.c[[\alpha](V\ \Box))/\alpha]$	
(μ_{var})	$[eta]\mulpha.c$	\rightarrow	c[eta/lpha]	also if eta is tp
(η_{μ})	$\mu lpha . [lpha] t$	\rightarrow	t	if $lpha$ not free in t
$(\widehat{\mu}_{var})$	$[t tp] \widehat{\mu} t tp.c$	\rightarrow	С	
$(\eta_{\widehat{\mu} v})$	$\widehat{\mu}$ tp.[tp] V	\rightarrow	V	even if tp occurs in t
$(let_{\widehat{\mu}})$	$\widehat{\mu}$ tp. $[\beta]((\lambda x.t) \widehat{\mu}$ tp. $c)$	\rightarrow	$(\lambda x.\widehat{\mu} ext{tp.}[eta]t)\widehat{\mu} ext{tp.}c$	
(let_{μ})	$(\lambda x.\mu \alpha.[eta]t) u$	\rightarrow	$\mu lpha . [eta]((\lambda x.t) u)$	
(let_{app})	$(\lambda x.t) u u'$	\rightarrow	$(\lambda x.(tu'))u$	
(let'_{app})	$V\left(\left(\lambda x.t\right)u ight)$	\rightarrow	$(\lambda x.(V t)) u$	
(η_{let})	$(\lambda x.x) t$	\rightarrow	t	

$\lambda\mu\widehat{\mu}$ tp-calculus and types

There are several possible systems of simple types and they all depend on a toplevel type, say T. They assign the following types to operators:

$$\begin{array}{lll} \langle t \rangle & : & T \to T \\ \mathcal{A} t & : & T \to A \\ \mathcal{S}(\lambda k.t) & : & ((A \to T) \to T) \to A \\ \mathcal{C}(\lambda k.t) & : & ((A \to B) \to T) \to A \\ \texttt{callcc}(\lambda k.t) & : & ((A \to B) \to A) \to A \end{array}$$

A Curry-Howard correspondence holds if the toplevel type T is taken to be \perp , in which case, we get types compatible with Griffin's seminal observations [1990] on Curry-Howard for classical logic.

$\langle t \rangle$:	$\perp \rightarrow \perp$	(no logical content)
$\mathcal{A} t$:	$\bot \to A$	(ex falso quodlibet)
$\mathcal{S}(\lambda k.t)$:	$((A \to \bot) \to \bot) \to A$	(double negation elimination)
$\mathcal{C}(\lambda k.t)$:	$((A \to B) \to \bot) \to A$	(an instance of it is double negation elimination)
$\texttt{callcc}(\lambda k.t)$:	$((A \to B) \to A) \to A$	(Peirce law)

Part II

Observational (Böhm) completeness in (call-by-name) $\lambda\mu$ -calculus

Failure of separability in call-by-name $\lambda\mu$ -calculus

The original syntax of $\lambda\mu$ -calculus:

 $\begin{array}{rcl}t & ::= & x \mid \lambda x.t \mid t t \mid \mu \alpha.c \\ c & ::= & [\alpha]t\end{array}$

Extending the call-by-name reduction semantics with η rules:

David-Py [2001]: There exist two closed terms W_0 and W_1 in $\lambda\mu$ -calculus that are not equal w.r.t. the equalities β , η , μ_{app} , μ_{var} and η_{μ} but whose observational behaviour is not separable.

Success of separability in Saurin's $\lambda\mu$ -calculus

A slightly different syntax (originally from de Groote):

```
t ::= x \mid \lambda x.t \mid tt \mid \mu \alpha.t \mid [\beta]t
```

The same (apparent) reduction rules:

But a major difference: $t \ [\beta]\mu\alpha.u \rightarrow t (u[\beta/\alpha])$. We can get rid of μ what was not possible in the original $\lambda\mu$ -calculus (indeed the left-hand side is even not expressible).

Saurin [2005]: The modified syntax of $\lambda\mu$ -calculus with the equalities β , η , μ_{app} , μ_{var} and η_{μ} has the Böhm separability property.

From Saurin's $\lambda\mu$ -calculus to call-by-name $\lambda\mu\hat{\mu}$ tp-calculus

In Saurin's calculus, the syntactic distinction between terms and commands is lost, making difficult to understand it computationally (e.g. in an abstract machine, i.e. in $\overline{\lambda}\mu\tilde{\mu}$ -calculus).

The constructions $\hat{\mu}$ tp and [tp] can be proved to be adequate coercions from Saurin's calculus to a calculus well-suited for computation.

Macro-definition of Saurin's calculus on top of $\lambda \mu \widehat{\mu} t p$

 $\begin{array}{rcl} \mu \alpha.t & \triangleq & \mu \alpha.[\texttt{tp}]t \\ [\alpha]t & \triangleq & \widehat{\mu}\texttt{tp}.[\alpha]t \end{array}$

Call-by-name $\lambda\mu\widehat{\mu}$ tp-calculus

Obviously, we have:

Proposition t = u in Saurin's $\lambda \mu$ -calculus iff t = u in $\lambda \mu \hat{\mu}$ tp-calculus.

Corollary $\lambda \mu \hat{\mu}$ tp-calculus is observationally complete on finite normal forms.

That the rules above are relevant for what can be considered as a call-by-name version of the shift/reset-calculus can be seen from the operational semantics and from the continuation-passing-style semantics of call-by-name $\lambda \mu \hat{\mu}$ tp-calculus.

Classification of the reduction semantics of $\lambda \mu \widehat{\mu}$ tp-calculus

Abstract machine for call-by-name $\lambda \mu \hat{\mu}$ tp-calculus

The language of the call-by-name abstract machine is an extension with explicit environments of the language of $\lambda \mu \hat{\mu}$ tp. We need an extra constant of evaluation context that we write ϵ . It is defined by:

$$\begin{array}{lll} K & ::= & \alpha[e] \mid t[e] \cdot K & (\text{linear ev. contexts}) \\ [S] & ::= & [] \mid [\text{tp} = K; S] & (\text{dynamic environment}) \\ [e] & ::= & [] \mid [x = t[e]; e] \mid [\alpha = K; e] & (\text{environments}) \\ s & ::= & c & [e] & [S] \mid t & [e] & K & [S] & (\text{states}) \end{array}$$

Abstract machine for call-by-name $\lambda \mu \hat{\mu}$ tp-calculus (continued)

The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form $[k]t \ [e] \ S$) and the ones giving priority to the term (commands of the form $t[e] \ K \ S$). We write $e(\alpha)$ for the binding of α in e and similarly for e(x).

Control given to the evaluation context

Control given to the "linear" evaluation context

To evaluate t, we need a linear toplevel free variables distinct from tp (which is not linear). Let ϵ be this variables. Then, the machine starts with the following initial state:

 $t \;[\;]\; \epsilon [\;]\; [\;]$

Note: terminal states are defined by

Abstract machine for call-by-value $\lambda \mu \widehat{\mu}$ tp-calculus

The language of the abstract machine is an extension with explicit environments of the language of $\lambda \mu \hat{\mu}$ tp. It is defined by:

Abstract machine for call-by-value $\lambda \mu \hat{\mu}$ tp-calculus (continued)

The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form W K S) and the ones giving priority to the term (commands of the form t[e] K S). We write $e(\alpha)$ for the binding of α in e and similarly for e(x).

Control given to the evaluation context

Control given to the term

V	[e]	K	[S]	\rightarrow	V[e]		K	[S]
t u	[e]	K	[S]	\rightarrow	t	[e]	$u[e] \cdot K$	[S]
$\mu \alpha . [k]t$	[e]	K	[S]	\rightarrow	t	$[\alpha = K; e]$	$k[\alpha = K; e]$	[S]
$\widehat{\mu}$ tp. $[k]t$	[e]	K	[S]	\rightarrow	t	[e]	k[e]	[tp = K; S]

Control given to the functional value

To evaluate t, the machine starts with the following initial state:

t [] tp[] []

References

- [1] Zena M. Ariola and Hugo Herbelin. Control Reduction Theories: The Benefit of Structural Substitution. *Journal of Functional Programming*, 2007. To appear.
- [2] Zena M. Ariola, Hugo Herbelin and Amr Sabry. A type-theoretic foundation of delimited continuations. In *Higher-Order and Symbolic Computation*, 2007. To appear.
- [3] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical Report 89/12, DIKU, University of Copenhagen, Copenhagen, Denmark, August 1989.
- [4] Olivier Danvy and Andrzej Filinski. Abstracting Control. Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice, pages 151–160, 1990.
- [5] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker and Bruce F. Duba. Reasoning with continuations. *First symposium on logic and computer science*, pages 131–141, 1986.
- [6] Andrzej Filinski. Representing monads. In *Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL '94), Portland, OR, USA*, pages 446–457. January 1994.
- [7] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In *Logic Programming and Automated Reasoning: International Conf. LPAR '92 Proceedings*, pages 190–201, 1992.
- [8] Amr Sabry. Note on axiomatizing the semantics of control operators. Technical Report CIS-TR-96-03, Dept of Information Science, Univ. of Oregon, 1996.
- [9] Alexis Saurin. Separation with streams in the $\lambda\mu$ -calculus. In *Proceedings, 20th Annual IEEE Symposium* on Logic in Computer Science (LICS '05), pages 356–365. IEEE Computer Society Press, 2005.